【题目】在平面直角坐标系中,已知曲线(为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.
(I)写出曲线与圆的极坐标方程;
(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.
科目:高中数学 来源: 题型:
【题目】已知圆,A为圆O1上任意一点,点D在线段上.,已知,.
(1)求点D的轨迹方程H;
(2)若直线与方程H所表示的图像交于E,F两点,是椭圆上任意一点.若OG平分弦EF,且,,试判断四边形OEGF形状并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m是实数,关于x的方程E:x2﹣mx+(2m+1)=0.
(1)若m=2,求方程E在复数范围内的解;
(2)若方程E有两个虚数根x1,x2,且满足|x1﹣x2|=2,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线Γ的方程为y2=4x,点P的坐标为(1,1).
(1)过点P,斜率为﹣1的直线l交抛物线Γ于U,V两点,求线段UV的长;
(2)设Q是抛物线Γ上的动点,R是线段PQ上的一点,满足2,求动点R的轨迹方程;
(3)设AB,CD是抛物线Γ的两条经过点P的动弦,满足AB⊥CD.点M,N分别是弦AB与CD的中点,是否存在一个定点T,使得M,N,T三点总是共线?若存在,求出点T的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别为,右顶点为A,上顶点为B,且满足向量 。
(1)若,求椭圆的标准方程;
(2)设为椭圆上异于顶点的点,以线段PB为直径的圆经过F1,问是否存在过F2的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com