精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

【答案】(1)见解析;(2).

【解析】试题分析:I极坐标方程两边乘以 利用转化成直角坐标方程,然后将直线的参数方程的上式化简成 代入下式消去参数 即可最后利用圆心到直线的距离与半径比较即可判定位置关系;(II)根据伸缩变换公式求出变换后的曲线方程然后利用参数方程表示出曲线上任意一点,代入 ,根据三角函数的辅助角公式,求出其范围即可.

试题解析:(I)直线的一般方程为

曲线的直角坐标方程为.

因为

所以直线和曲线相切.

(II)曲线.

曲线经过伸缩变换

得到曲线的方程为

则点的参数方程为为参数),

所以

所以的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 为真”是“为真”的充分不必要条件;

B. 样本的标准差是3.3

C. K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关;

D. 设有一个回归直线方程为,则变量每增加一个单位,平均减少1.5个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对名出租车司机进行调查,调查问卷共道题,答题情况如下表:

答对题目数

I)如果出租车司机答对题目大于等于,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;

II)从答对题目数小于的出租车司机中选出人做进一步的调查,求选出的人中至少有一名女出租车司机的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设铁路长为,且,为将货物从运往,现在上的距点的点处修一公路至,已知单位距离的铁路运费为,公路运费为.

(1)将总运费表示为的函数

(2)如何选点才使总运费

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当为自然对数的底数)时,求的最小值;

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考四川文科】已知数列{ }的首项为1 为数列的前n项和, ,其中q>0 .

)若 成等差数列,求的通项公式;

)设双曲线 的离心率为 ,且 ,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,又的导函数.若正常数满足条件.证明: <0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于(  )

A. 0.5 B. -0.5

C. 1.5 D. -1.5

查看答案和解析>>

同步练习册答案