精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=Asin(ωx+φ)满足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),则ω的一个可能取值是(
A.2
B.3
C.4
D.5

【答案】B
【解析】解:函数f(x)=Asin(ωx+φ)满足:f( +x)=﹣f( ﹣x),
所以函数f(x)的图象关于( ,0)对称,
又f( +x)=f( ﹣x),
所以函数f(x)的图象关于x= 对称;
所以 = = ,k∈Z,
所以T=
=
解得ω=3(2k﹣1),k∈Z;
当k=1时,ω=3,
所以ω的一个可能取值是3.
故选:B.
根据题意,得出函数f(x)的图象关于( ,0)对称,也关于x= 对称;由此求出函数的周期T的可能取值,从而得出ω的可能取值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在R上的奇函数,对任意的x∈R,满足f(x+1)+f(x)=0,且当0<x<1时,f(x)=2x , 则f(﹣ )+f(4)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ+cosθ,曲线C3的极坐标方程为θ=
(1)把曲线C1的参数方程化为极坐标方程;
(2)曲线C3与曲线C1交于O、A,曲线C3与曲线C2交于O、B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为为坐标原点.

1)求的轨迹方程;

2)当时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C所对的边分别为a,b,c,已知sinC=
(1)若a+b=5,求△ABC面积的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,若是线段上的动点,则下列结论不正确的是(  )

A. 三棱锥的正视图面积是定值

B. 异面直线所成的角可为

C. 异面直线所成的角为

D. 直线与平面所成的角可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC-中,DE分别是ABBB1的中点,=AC=CB=AB.

)证明://平面

)求二面角D--E的正弦值.

查看答案和解析>>

同步练习册答案