【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求函数f(x)的解析式,并说明函数的单调性;
(2)解不等式f(2x+1)+f(x)<0.
【答案】
(1)解:因为f(x)是R上的奇函数,
所以f(0)=0,解得b=﹣1,
从而有f(x)= ,
经检验,符合题意.
因为f(x)=1﹣ ,
所以由y=2x的单调性可推知f(x)在R上为增函数
(2)解:因为f(x)在R上是奇函数,
从而不等式f(2x+1)+f(x)<0可化为f(2x+1)<﹣f(x),
即f(2x+1)<f(﹣x),
又因f(x)是R上的增函数,
由上式推得1+2x<﹣x,解得x .
所以不等式的解集为(﹣ )
【解析】(1)利用(0)=0,解得b,可求函数f(x)的解析式,f(x)=1﹣ ,由y=2x的单调性可推知函数的单调性;(2)不等式f(2x+1)+f(x)<0,转化为f(2x+1)<f(﹣x),利用单调性,可得结论.
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
科目:高中数学 来源: 题型:
【题目】已知分别是双曲线E: 的左、右焦点,P是双曲线上一点, 到左顶点的距离等于它到渐近线距离的2倍,(1)求双曲线的渐近线方程;(2)当时, 的面积为,求此双曲线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上、下焦点分别为,上焦点到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=.
(I)求椭圆C的标准方程;
(II)设过椭圆C的上顶点A的直线与椭圆交于点B(B不在y轴上),垂直于的直线与交于点M,与轴交于点H,若=0,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的关系:厂里的固定成本为2.8万元,每生产1百台的生产成本为1万元,每生产产品x(百台),其总成本为G(x)(万元)(总成本=固定成本+生产成本).如果销售收入R(x)= ,且该产品产销平衡(即生产的产品都能卖掉),请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】孝感市及周边地区的市民游玩又添新去处啦!孝感熙凤水乡旅游度假区于2017年10月1日正式对外开放.据统计,从2017年10月1日到10月7日参观孝感市熙凤水乡旅游度假区的人数如表所示:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 11 | 13 | 8 | 9 | 7 | 8 | 10 |
(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);
(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com