精英家教网 > 高中数学 > 题目详情

【题目】已知cosα= ,cos(α﹣β)= ,且0<β<α<
(1)求tan2α的值;
(2)求β.

【答案】
(1)解:由cosα= ,0<β<α< ,可得sinα= = ,tanα= =4

∴tan2α= = =﹣


(2)解:由cosα= ,cos(α﹣β)= ,且0<β<α< ,可得sin(α﹣β)= =

∴cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)

= + =

∴β=


【解析】(1)由条件利用同角三角函数的基本关系,求得tanα的值,再利用二倍角的正切公式求得tan2α的值.(2)由条件求得sin(α﹣β)的值,利用两角差的余弦公式求得cosβ=cos[α﹣(α﹣β)]的值,从而求得β的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某科研小组研究发现:一棵水果树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系: .此外,还需要投入其它成本(如施肥的人工费等)百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为(单位:百元).

(1)求的函数关系式;

当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一组合几何体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求证:AC⊥平面PDB;
(II)求四棱锥B﹣CEPD的体积;
(III)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为y=kx+b(其中k的值与b无关),圆M的方程为x2+y2﹣2x﹣4=0.
(1)如果不论k取何值,直线l与圆M总有两个不同的交点,求b的取值范围;
(2)b=1,l与圆交于A,B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算下列几个式子,结果为 的序号是 ①tan25°+tan35° tan25°tan35°,

③2(sin35°cos25°+sin55°cos65°),

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按下列程序框图运算,则输出的结果是(
A.42
B.128
C.170
D.682

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上恒不为零的函数,且对任意的x、y∈R都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.( ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)已知点,曲线在点 处的切线与直线交于点,求为坐标原点)的面积最小时的值,并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究质量x(单位:g)对弹簧长度y(单位:cm)的影响,对不同质量的6根弹簧进行测量,得到如下数据:

x (g)

5

10

15

20

25

30

y (cm)

7.25

8.12

8.95

9.90

10.9

11.8


(1)画出散点图;
(2)如果散点图中的各点大致分布在一条直线的附近,求y与x之间的回归方程. ( 其中

查看答案和解析>>

同步练习册答案