精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+1,x∈[0,1]的反函数为f-1(x),则函数y=[f-1(x)]2+f-1(2x)的值域是(  )
A、[0,1]
B、[1,1+
3
]
C、[1,2]
D、{1}
分析:本题考查反函数的概念、反函数的求法、函数式的化简、函数值域的求法等相关知识.
根据y=x2+1及x∈[0,1]可得f-1(x)的解析式,由此函数y=[f-1(x)]2+f-1(2x)的解析式可求,根据函数y=[f-1(x)]2+f-1(2x)成立的条件可以确定x的取值范围,进而求得值域.
解答:解:由y=x2+1解得:x=±
y-1

∵x∈[0,1]∴x=
y-1
且y∈[1,2]
∴原函数的反函数为f-1(x)=
x-1
 x∈ [1,2]

由y=[f-1(x)]2+f-1(2x)
=(
x-1
) 2
+
2x-1

=x+
2x-1
-1

∵函数y=[f-1(x)]2+f-1(2x)的定义域为
1≤x≤2
1≤2x≤2

解得:x∈{1},此时y∈{1},
即函数y=[f-1(x)]2+f-1(2x)的值域是{1}.
故选D
点评:本题虽小,但综合性强,展示了函数概念的深层次的问题,函数的值域是由函数的解析式和函数的定义域所确定,在本题体现的尤其突出.易错点表现在求函数y=[f-1(x)]2+f-1(2x)的定义域,它是由
1≤x≤2
1≤2x≤2
所确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案