精英家教网 > 高中数学 > 题目详情

【题目】的倾斜角为绕其上一点沿逆时针方向旋转角得到直线轴上的截距为沿逆时针方向再旋转角得到直线,则的方程为___________.

【答案】22x11y320

【解析】

由题意可得直线1和直线3的夹角等于,求得直线1的斜率为2,根据直线2的倾斜角为,求得直线2 的斜率,从而求得直线2的方程,根据直线2和直线3的方程求得P的坐标,用点斜式求得1的方程.

由题意可得直线1和直线3的夹角等于直线,∴直线1的斜率为2,即

如图所示:利用三角形的外角等于不相邻的两个内角的和,可得直线2的倾斜角为

∴直线2的斜率为,∵直线2的纵截距为﹣2,∴直线2的方程为yx2

,求得点P的坐标为(,﹣),

∴直线1的方程为y+2x),即22x11y320

故答案为:22x11y320

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求函数图象在处的切线方程;

(2)若对任意,不等式恒成立,求的取值范围;

(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左.右焦点分别为为坐标原点.

(1)若斜率为的直线交椭圆于点,若线段的中点为,直线的斜率为,求的值;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线分别与椭圆交于点,设直线的斜率为,直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地的出租车价格规定:起步费元,可行公里,公里以后按每公里元计算,可再行公里;超过公里按每公里元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定。

1)若小明乘出租车从学校到家,共公里,请问他应付出租车费多少元?

2)求车费(元)与行车里程(公里)之间的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a为实数

求函数的单调区间;

若存在实数a,使得对任意恒成立,求实数m的取值范围.提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求证:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用如图所示的三角形解释二项式乘方展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….记作数列,若数列的前项和为,则 ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案