精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x3+ax2-4x+c,g(x)=lnx+(b-1)x+4,曲线y=f(x)在x=1处的切线方程为3x-y+1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对?x1∈[-3,0],?x2∈[0,+∞)恒有f(x1)≥g(x2)成立,求b的取值范围.

分析 (Ⅰ)求出导数,利用导数的几何意义,求出a,c,即可求f(x)的解析式;
(Ⅱ)对?x1∈[-3,0],?x2∈[0,+∞)恒有f(x1)≥g(x2)成立,等价于f(x)min≥g(x)max,即可求b的取值范围.

解答 解:(Ⅰ)∵f(x)=x3+ax2-4x+c,
∴f′(x)=3x2+2ax-4,∴f′(1)=2a-1=3,∴a=2
将切点(1,4)代入函数f(x),可得c=5,
∴f(x)=x3+2x2-4x+5;
(Ⅱ)令f′(x)=(x+2)(3x-2)>0,可得x<-2,f′(x)>0,-2<x<0,f′(x)<0,
∵f(-3)=8,f(0)=5,
∴?x1∈[-3,0],f(x)min=f(0)=5,
∵g(x)=lnx+(b-1)x+4,∴g′(x)=$\frac{1}{x}$+b-1,
b-1≥0,b≥1,g′(x)>0,g(x)在(0,+∞)上单调递增,没有最大值,不合题意,舍去;
b-1<0,b<1,令g′(x)=0,x=$\frac{1}{1-b}$,
∴x∈(0,$\frac{1}{1-b}$),g′(x)>0,∴g(x)单调递增,
x∈($\frac{1}{1-b}$,+∞),g′(x)<0,g(x)单调递减,
∴gmax(x)=ln$\frac{1}{1-b}$+3,
∴5≥ln$\frac{1}{1-b}$+3,
∴b≤1-$\frac{1}{{e}^{2}}$.

点评 本题考查导数知识的综合运用,考查导数的几何意义,考查恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,某观光休闲庄园内有一块扇形花卉园OAB,其中O为扇形所在圆的圆心,扇形半径为500米,cos∠AOB=$\frac{1}{4}$.庄园经营者欲在花卉园内修建一条赏花长廊,分别在边OA、弧$\widehat{AB}$、边OB上选点D,C,E修建赏花长廊CD,CE,且CD∥OB,CE∥OA,设CD长为x米,CE长为y米.
(Ⅰ)试求x,y满足的关系式;
(Ⅱ)问x,y分别为何值时,才能使得修建赏花长廊CD与CE的总长最大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1,A1C1的中点,则BM与AN所成角的余弦值为(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若将函数y=cos(2x+$\frac{π}{4}$)的图象向左平移$\frac{π}{6}$个单位长度,则平移后图象的一个对称中心是(  )
A.($\frac{π}{24}$,0)B.($\frac{5π}{24}$,0)C.($\frac{11π}{24}$,0)D.($\frac{11π}{12}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=ax2+bx-1,且0≤f(1)≤1,-2≤f(-1)≤0,则z=$\frac{2a+b}{a+3b}$的取值范围是[$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一学生通过某种英语听力测试的概率为$\frac{1}{2}$,他连续测试2次,则恰有1次获得通过的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等差数列{an}中,若a2,a2016为方程x2-10x+16=0的两根,则a3+a1010+a2014=(  )
A.10B.15C.20D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,已知b=1,c=$\sqrt{3}$,∠C=120°,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在三棱锥S-ABC中,底面ABC为边长为3的正三角形,侧棱SA⊥底面ABC,若三棱锥的外接球的体积为36π,则该三棱锥的体积为(  )
A.$9\sqrt{2}$B.$\frac{{27\sqrt{2}}}{2}$C.$\frac{{9\sqrt{2}}}{2}$D.$27\sqrt{2}$

查看答案和解析>>

同步练习册答案