【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,点E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于点G.
(1)求证:EF=EG;
(2)求线段MG的长.
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱是AA′,CC′的中点,过直线EF的平面分别与棱BB′,DD′交于M,N,设BM=x,x∈[0,1],给出以下四种说法:
(1)平面MENF⊥平面BDD′B′;
(2)当且仅当x=时,四边形MENF的面积最小;
(3)四边形MENF周长L=f(x),x∈[0,1]是单调函数;
(4)四棱锥C′﹣MENF的体积V=h(x)为常函数,以上说法中正确的为( )
A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若 =﹣9,则λ的值为( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究函数(x∈R)时,分别给出下面几个结论:
①函数f(x)是奇函数;②函数f(x)的值域为(-1,1);③函数f(x)在R上是增函数;其中正确结论的序号是
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为2的正方形中,,分别为,的中点,为的中点,沿,,将正方形折起,使,,重合于点,在构成的三棱锥中,下列结论错误的是
A. 平面
B. 三棱锥的体积为
C. 直线与平面所成角的正切值为
D. 异面直线与所成角的余弦值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象过点(0,1),如图所示.
(1)求函数f1(x)的表达式;
(2)将函数y=f1(x)的图象向右平移个单位,得函数y=f2(x)的图象,求y=f2(x)的最大值,并求出此时自变量x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线
(1)求证:直线过定点;
(2)求直线被圆所截得的弦长最短时的值;
(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com