精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,点E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于点G.

(1)求证:EF=EG;
(2)求线段MG的长.

【答案】
(1)证明:连接AF,OF,则A,F,G,M共圆,

∴∠FGE=∠BAF,

∵EF⊥OF,

∴∠EFG=∠FGE,

∴EF=EG


(2)解:由AB=10,CD=8可得OM=3,

∴ED= OM=4,EF2=EDEC=48,EF=EG=4

连接AD,则∠BAD=∠BFD,

∴MG=EM﹣EG═8﹣4


【解析】(1)由EF为圆的切线得∠EFG=∠BAF,由垂直关系可知点A、M、G、F四点共圆,从而得∠FGE=∠BAF,所以∠EFG=∠FGE(2)由已知及切线长定理可得,EF=EG=4 ,从而MG=EM﹣EG=8﹣4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱是AA′,CC′的中点,过直线EF的平面分别与棱BB′,DD′交于M,N,设BM=x,x∈[0,1],给出以下四种说法:

(1)平面MENF平面BDD′B′;

(2)当且仅当x=时,四边形MENF的面积最小;

(3)四边形MENF周长L=f(x),x∈[0,1]是单调函数;

(4)四棱锥C′﹣MENF的体积V=h(x)为常函数,以上说法中正确的为( )

A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若 =﹣9,则λ的值为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数(x∈R)时,分别给出下面几个结论:

①函数f(x)是奇函数;②函数f(x)的值域为(-1,1);③函数f(x)在R上是增函数;其中正确结论的序号是

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.

(1)求f(x)的解析式;

(2)解不等式f(x)>2x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2的正方形分别为的中点的中点沿将正方形折起使重合于点在构成的三棱锥下列结论错误的是

A. 平面

B. 三棱锥的体积为

C. 直线与平面所成角的正切值为

D. 异面直线所成角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段图象过点(0,1),如图所示.

(1)求函数f1(x)的表达式;

(2)将函数yf1(x)的图象向右平移个单位,得函数yf2(x)的图象,求yf2(x)的最大值,并求出此时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

(1)求证:直线过定点;

(2)求直线被圆所截得的弦长最短时的值;

(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】做一个无盖的圆柱形水桶,若要使其体积是,且用料最省,则圆柱的底面半径为__________

查看答案和解析>>

同步练习册答案