精英家教网 > 高中数学 > 题目详情
7.设a>0,b>0,且a+b=1,则$\frac{1}{a+1}$+$\frac{1}{b+1}$的最小值为$\frac{4}{3}$,此时a=$\frac{1}{2}$.

分析 由已知可得a+1>0,b+1>0,且(a+1)+(b+1)=3,整体代入可得$\frac{1}{a+1}$+$\frac{1}{b+1}$=$\frac{1}{3}$($\frac{1}{a+1}$+$\frac{1}{b+1}$)[(a+1)+(b+1)]=$\frac{1}{3}$(2+$\frac{b+1}{a+1}$+$\frac{a+1}{b+1}$),由基本不等式可得.

解答 解:∵a>0,b>0,且a+b=1,
∴a+1>0,b+1>0,且(a+1)+(b+1)=3
∴$\frac{1}{a+1}$+$\frac{1}{b+1}$=$\frac{1}{3}$($\frac{1}{a+1}$+$\frac{1}{b+1}$)[(a+1)+(b+1)]
=$\frac{1}{3}$(2+$\frac{b+1}{a+1}$+$\frac{a+1}{b+1}$)≥$\frac{1}{3}$(2+2$\sqrt{\frac{b+1}{a+1}•\frac{a+1}{b+1}}$)=$\frac{4}{3}$
当且仅当$\frac{b+1}{a+1}$=$\frac{a+1}{b+1}$即a=b=$\frac{1}{2}$时取等号,
故答案为:$\frac{4}{3}$;$\frac{1}{2}$

点评 本题考查基本不等式求最值,变形后用整体法是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,若△OAB是等边三角形,则△OAB的面积为$\frac{\sqrt{3}}{4}$或$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{m}$=(2sin$\frac{x}{2}$,-$\sqrt{3}$),$\overrightarrow{n}$=(1-2sin2$\frac{x}{4}$,cosx),(其中x∈R).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求x的取值的集合;
(2)若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-2t,当x∈[0,π]是函数f(x)有两个零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若点P(cosα,sinα)在直线y=-2x上,则sin2α+2cos2α的值是(  )
A.-2B.-$\frac{7}{5}$C.-$\frac{14}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集为R,集合M={x|5x≥1},N={x|$\frac{\sqrt{x-2}}{x-3}$≤0},则M∩CRN=(  )
A.{x|x≤0}B.{x|0≤x<2或x>3}C.{x|2≤x≤3}D.{x|0≤x<2或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}x,x>1\end{array}$,则f(f(-2))=-2;满足不等式f(x)≤4的x的取值范围是{x|x≥-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\left\{\begin{array}{l}{sin(πx),x≤1}\\{{∫}_{1}^{x}\frac{1}{t}dt,x>1}\end{array}\right.$ 则f(f($\sqrt{e}$))等于(  )
A.eB.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)在R上既是奇函数,又是减函数,则满足f(1-x)+f(3x-2)<0的x的取值范围为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆心在y轴上,且过点(-1,2)并切于x轴的圆的标准方程为(  )
A.(x-$\frac{5}{4}$)2+y2=$\frac{25}{16}$B.(x)2+(y-$\frac{5}{4}$)2=$\frac{25}{16}$C.(x+$\frac{5}{4}$)2+y2=$\frac{25}{16}$D.(x)2+(y+$\frac{5}{4}$)2=$\frac{25}{16}$

查看答案和解析>>

同步练习册答案