精英家教网 > 高中数学 > 题目详情

【题目】已知mn是两条不同的直线,是两个不同的平面,给出下列命题:

,则

,则

,则

,则

其中正确命题的序号是(  )

A.①②B.①③C.①④D.②④

【答案】C

【解析】

在①中,由面面垂直的判定定理得;在②中,n有可能与都不垂直;在③中,有可能相交但不垂直;在④中,由线面平行的性质定理得

已知mn是两条不同的直线,是两个不同的平面,得:

在①中,若,则由面面垂直的判定定理得,故①正确;

在②中,若,则n有可能与都不垂直,故②错误;

在③中,若,则相交或平行,即有可能相交但不垂直,故③错误;

在④中,若,则由线面平行的性质定理得,故④正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1底面四边形ABCD为菱形A1AAB2,∠ABCEF分别是BCA1C的中点

(1)求异面直线EFAD所成角的余弦值;

(2)点M在线段A1D上, .若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的右焦点为F,左顶点为A,离心率,且经过圆O:的圆心.过点F作不与坐标轴重合的直线和该椭圆交于MN两点,且直线分别与直线交于PQ两点.

1)求椭圆的方程;

2)证明:为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合表示具有下列性质的函数的集合:①的定义域为;②对任意,都有

1)若函数,证明是奇函数;并当,求的值;

2)设函数a为常数)是奇函数,判断是否属于,并说明理由;

3)在(2)的条件下,若,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),把曲线横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线,直线的普通方程是,以坐标原点为极点,轴正半轴为极轴建立极坐标系;

(1)求直线的极坐标方程和曲线的普通方程;

(2)记射线交于点,与交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是(

A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐

B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐

C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐

D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)在曲线上任取一点,连接,在射线上取,使,点轨迹的极坐标方程;

2)在曲线上任取一点,在曲线上任取一点,的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由郭帆执导吴京主演的电影《流浪地球》于201925日起在中国内地上映,影片引发了观影热潮,预计《流浪地球》票房收入47亿人民币,超过《红海行动》成为中国影史票房亚军,仅次于《战狼2.某电影院为了解该影院观看《流浪地球》的观众的年龄构成情况,随机抽取了40名观众,将他们的年龄分成7段:,得到如图所示的频率分布直方图.

1)试求这40名观众年龄的平均数、中位数、众数;

2)(i)若从样本中年龄在50岁以上的观众中任取3名赠送VIP贵宾观影卡,求这3名观众至少有1人年龄不低于70岁的概率;

ii)该电影院决定采用抽奖方式来提升观影人数,将《流浪地球》电影票票价提高20元,并允许购买电影票的观众抽奖3次,中奖1次、2次、3次分别奖现金元、元,.设观众每次中奖的概率均为,若要使抽奖方案对电影院有利,则最高可定为多少元?(结果精确到个位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )

A. 时,B. 时,

C. 时,D. 时,

查看答案和解析>>

同步练习册答案