精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C,过点的直线l与抛物线C交于不同的两点MN,设,且时,则直线MN斜率的取值范围是  

A. B.

C. D.

【答案】A

【解析】

设点,并设直线l的方程为,将直线l的方程与抛物线C的方程联立,列出韦达定理,利用两点的斜率公式并结合韦达定理得出直线QM和直线NQ的斜率互为相反数,得出的角平分线为x轴,利用角平分线的性质得出,可得出,代入韦达定理并消去可得出关于的函数表达式,可计算出的范围,由可得出直线MN的斜率k的取值范围.

设直线l的方程为,则,设点

将直线l的方程与抛物线C的方程联立,消去x得,,由韦达定理得

所以,,所以,x轴为的角平分线,,所以,

式代入韦达定理得

,则,所以,

,所以,

设直线MN的斜率为k,则

,所以,,解得

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示,则函数图象的一个对称中心可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,的直径,PA垂直于所在的平面,C是圆周上不同于AB的一动点.

1)证明:是直角三角形;

2)若,且当直线与平面所成角的正切值为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆上的动点T满足:线段TQ的垂直平分线与线段TP相交于点K

求点K的轨迹C的方程;

经过点的斜率之积为的两条直线,分别与曲线C相交于MN两点,试判断直线MN是否经过定点若是,则求出定点坐标;若否,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某赛季,甲、乙两名篮球运动员都参加了场比赛,他们所有比赛得分的情况如下:

甲:

乙: .

(1)求甲、乙两名运动员得分的中位数.

(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:

得出下面四个结论:

甲同学的逻辑排名比乙同学的逻辑排名更靠前

②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前

③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前

④甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前

则所有正确结论的序号是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

1)设甲同学上学期间的三天中之前到校的天数为,求时的概率

2)设为事件“上学期间的三天中,甲同学在之前到校的天数比乙同学在之前到校的天数恰好多”,求事件发生的概率.

查看答案和解析>>

同步练习册答案