精英家教网 > 高中数学 > 题目详情
17.设命题P:?x∈R,x2+2>0.则¬P为(  )
A.$?{x_0}∈R,{x_0}^2+2>0$B.$?{x_0}∈R,{x_0}^2+2≤0$
C.$?{x_0}∈R,{x_0}^2+2<0$D.?x∈R,x2+2≤0

分析 根据全称命题的否定是特称命题进行判断即可.

解答 解:命题是全称命题,则命题的否定是特称命题,
即¬P:$?{x_0}∈R,{x_0}^2+2≤0$,
故选:B

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知α∈(0,π),tan($α-\frac{π}{4}$)=$\frac{1}{3}$,则sin($\frac{π}{4}+α$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,则输出s的值为(  )
A.21B.55C.91D.140

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\sqrt{3}cos(2x-\frac{π}{3})(x∈R)$,下列结论错误的是(  )
A.函数f(x)的最小正周期为πB.函数f(x)图象关于点$(\frac{5π}{12},0)$对称
C.函数f(x)在区间$[0,\frac{π}{2}]$上是减函数D.函数f(x)的图象关于直线$x=\frac{π}{6}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是等差数列,满足a1=1,a4=-5,数列{bn}满足b1=1,b4=21,且{an+bn}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前n项的和为Sn,且满足:$2{S_n}={a_n}^2+a{\;}_n$,(n∈N+
(1)求a1,a2,a3的值
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-(a+2)x+alnx,常数a>0
(1)当x=1时,函数f(x)取得极小值-2,求函数f(x)的极大值
(2)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D内恒成立,则称点P为h(x)的“类优点”,若点(1,f(1))是函数f(x)的“类优点”,
①求函数f(x)在点(1,f(1))处的切线方程
②求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)若点E是线段DB上的中点,求三棱锥E-ABM的体积V1与四棱锥D-ABCM的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.双曲线$\frac{x^2}{a^2}-\frac{y^2}{7}=1$(a>0)的右焦点为圆(x-4)2+y2=1的圆心,则此双曲线的离心率为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案