精英家教网 > 高中数学 > 题目详情
8.下图中的图形经过折叠不能围成棱柱的是(  )
A.B.C.D.

分析 D中的侧面展开图在围成棱柱时底面是四边形,侧面只有三个面,故D图形经过折叠不能围成棱柱.

解答 解:由棱柱的侧面展开图的性质得:
A中的侧面展开图能围成一个四棱柱,
B中的侧面展开图能围成一个五棱柱,
C中的侧面展开图能围成一个三棱柱,
D中的侧面展开图在围成棱柱时底面是四边形,侧面只有三个面,
故D图形经过折叠不能围成棱柱.
故选:D.

点评 本题考查棱柱的侧面展开图的性质的应用,是基础题,解题时要认真审题,注意棱柱的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.集合A={1,2,0},B={1,3},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M=$\left\{{x\left|{y=ln({x^2}-3x-4)}\right.}\right\},N=\left\{{y\left|{y=\sqrt{{x^2}-1}}\right.}\right\}$,则M∩N=(  )
A.(-∞,-1)B.(0,+∞)C.(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考
生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(1)请根据数据在答题卡的茎叶图中完成物理成绩统计如图1;
(2)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图如图2;
数学成绩的频数分布表如下表:
数学成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
频数       
(3)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(x1-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)=5524,$\frac{4698}{5524}$≈0.85
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,ABCD为空间四边形,点E,F分别是AB,BC的中点,点G,H分别在CD,AD上,且DH=$\frac{1}{3}$AD,DG=$\frac{1}{3}$CD.
求:(1)判断EFGH的形状;
(2)证明直线EH,FG必相交于一点,且这个交点在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=px3+x2+4x(常数p≠0)在x=x1处取得极大值M.
(1)当M=-4时,求p的值;
(2)记f(x)=px3+x2+4x在x∈[-5,5]上的最小值为N,若N≥-5,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\frac{sinx}{x}$,在下列四个命题中:
①f(x)是奇函数;
②对定义域内任意x,f(x)<1恒成立;
③当$x=\frac{3π}{2}$时,f(x)取极小值;
④f(2)>f(3),
正确的是:②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点P$(1,\frac{{\sqrt{3}}}{3})$作圆x2+y2=1的切线,切点分别为A、B,直线AB恰好经过椭圆C的右焦点和上顶点.
(Ⅰ)求直线AB的方程;
(Ⅱ) ①求椭圆C的标准方程;
②若直线l:y=kx+m与椭圆C相交于M,N两点(M,N不是左右顶点),椭圆的右顶点为D,且满足$\overrightarrow{DM}•\overrightarrow{DN}=0$,试判断直线l是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.f(x)=$\frac{2}{x}$B.f(x)=log2xC.f(x)=($\frac{1}{2}$)xD.f(x)=-x2+2

查看答案和解析>>

同步练习册答案