精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长轴长是短轴长的倍,点在椭圆.

1)求椭圆的方程;

2)若过椭圆的左焦点的直线与椭圆相交所得弦长为,求直线的斜率;

3)过点的任意直线与椭圆交于两点,设点到直线的距离分别为.,求的值.

【答案】1;(2;(3.

【解析】

1)利用长轴长是短轴长的倍,点在椭圆上,建立方程组求解;

2)联立方程,结合弦长可求直线的斜率;

3)把转化为坐标间的关系,结合韦达定理可求.

1)由题意,则方程化为

因为点在椭圆上,所以,解得

所以椭圆的方程为.

2)设直线的方程为

联立

设直线与椭圆相交于

解得,故直线的斜率为.

3)当直线的斜率不存在时,恒成立;

当直线的斜率为0时,由,即

当直线的斜率存在且不为0时,设.

联立

,不妨设

因为,所以,即

整理可得

解得.

综上可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:

组别

年龄

A组统计结果

B组统计结果

经常使用单车

偶尔使用单车

经常使用单车

偶尔使用单车

27人

13人

40人

20人

23人

17人

35人

25人

20人

20人

35人

25人

(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.求这60人中“年龄达到35岁且偶尔使用单车”的人数;

(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄应取25还是35?请通过比较的观测值的大小加以说明.

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“斗拱”是中国古代建筑中特有的构件,从最初的承重作用,到明清时期集承重与装饰作用于一体。在立柱顶、额枋和檐檩间或构架间,从枋上加的一层层探出成弓形的承重结构叫拱,拱与拱之间垫的方形木块叫斗。如图所示,是“散斗”(又名“三才升”)的三视图,则它的体积为( )

A. B. C. 53 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的焦点和上项点分别为,我们称为椭圆特征三角形”.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是相似椭圆,且三角形的相似比即为椭圆的相似比. 若椭圆,直线

已知椭圆与椭圆是相似椭圆,求的值及椭圆与椭圆相似比;

求点到椭圆上点的最大距离;

如图,设直线与椭圆相交于两点,与椭圆交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校科技小组在计算机上模拟航天器变轨返回试验,设计方案如图:航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、为顶点的抛物线的实线部分,降落点为.观测点同时跟踪航天器.

1)求航天器变轨后的运行轨迹所在的曲线方程;

2)试问:当航天器在轴上方时,观测点测得离航天器的距离分别为多少时,应向航天器发出变轨指令?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始________h后,两车的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)讨论函数的单调性;

(2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线:交抛物线两点,

(1)若的中点为,直线的斜率为,证明:为定值;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)求函数的单调区间和最值;

2)当时,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案