精英家教网 > 高中数学 > 题目详情
已知点M(k,l)、P(m,n),(klmn≠0)是曲线C上的两点,点M、N关于x轴对称,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),
(Ⅰ)用k、l、m、n分别表示xE和xF
(Ⅱ)当曲线C的方程分别为:x2+y2=R2(R>0)、时,探究xE•xF的值是否与点M、N、P的位置相关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为y2=2px(p>0)时,探究xE与xF经加、减、乘、除的某一种运算后为定值的一个正确结论.
【答案】分析:(Ⅰ)依题意N(k,-l),由klmn≠0及MP、NP与x轴有交点知M、P、N为不同点,直线PM的方程为,由此能够推导出xE和xF
(Ⅱ)由M,P在圆C:x2+y2=R2上,知(定值).所以xE•xF的值是与点M、N、P位置无关.同理知xE•xF的值是与点M、N、P位置无关.
(Ⅲ)一个探究结论是:xE+xF=0.证明如下:依题意,.由M,P在抛物线C:y2=2px(p>0)上,能够导出xE+xF为定值.
解答:解:(Ⅰ)依题意N(k,-l),且∵klmn≠0及MP、NP与x轴有交点知:(2分)
M、P、N为不同点,直线PM的方程为,(3分)
,同理可得.(5分)
(Ⅱ)∵M,P在圆C:x2+y2=R2上,∴
(定值).
∴xE•xF的值是与点M、N、P位置无关.(8分)
同理∵M,P在椭圆C:上,∴(定值).
∴xE•xF的值是与点M、N、P位置无关.(11分)
(Ⅲ)一个探究结论是:xE+xF=0.(13分)
证明如下:依题意,
∵M,P在抛物线C:y2=2px(p>0)上,∴n2=2pm,l2=2pk.
∴xE+xF为定值.
点评:本题考查圆锥曲线和直线的位置关系的综合运用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(k,l)、P(m,n),(klmn≠0)是曲线C上的两点,点M、N关于x轴对称,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),
(Ⅰ)用k、l、m、n分别表示xE和xF
(Ⅱ)当曲线C的方程分别为:x2+y2=R2(R>0)、
x2
a2
+
y2
b2
=1(a>b>0)
时,探究xE•xF的值是否与点M、N、P的位置相关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为y2=2px(p>0)时,探究xE与xF经加、减、乘、除的某一种运算后为定值的一个正确结论.

查看答案和解析>>

科目:高中数学 来源:福建省月考题 题型:解答题

已知点M(k,l)、P(m,n),(klmn≠0)是曲线C上的两点,点M、N关于x轴对称,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),
(Ⅰ)用k、l、m、n分别表示xE和xF
(Ⅱ)某同学发现,当曲线C的方程为:x2+y2=R2(R>0)时,xE·xF=R2是一个定值与点M、N、P的位置无关;请你试探究当曲线C的方程为:时,xE·xF的值是否也与点M、N、P的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为y2=2px(p>0)时,探究xE与xF经加、减、乘、除的某一种运算后为定值的一个正确结论。(只要求写出你的探究结论,无须证明)

查看答案和解析>>

科目:高中数学 来源:2012年湖北省武汉市高三5月供题训练数学试卷2(理科)(解析版) 题型:解答题

已知点M(k,l)、P(m,n),(klmn≠0)是曲线C上的两点,点M、N关于x轴对称,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),
(Ⅰ)用k、l、m、n分别表示xE和xF
(Ⅱ)当曲线C的方程分别为:x2+y2=R2(R>0)、时,探究xE•xF的值是否与点M、N、P的位置相关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为y2=2px(p>0)时,探究xE与xF经加、减、乘、除的某一种运算后为定值的一个正确结论.

查看答案和解析>>

科目:高中数学 来源:2011年福建省福州市高三3月质量检查数学试卷(理科)(解析版) 题型:解答题

已知点M(k,l)、P(m,n),(klmn≠0)是曲线C上的两点,点M、N关于x轴对称,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),
(Ⅰ)用k、l、m、n分别表示xE和xF
(Ⅱ)当曲线C的方程分别为:x2+y2=R2(R>0)、时,探究xE•xF的值是否与点M、N、P的位置相关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为y2=2px(p>0)时,探究xE与xF经加、减、乘、除的某一种运算后为定值的一个正确结论.

查看答案和解析>>

同步练习册答案