分析 (1)先利用赋值法研究函数f(x)的性质,令x=y=0得,f(0)=0,再令y=-x,得f(-x)=-f(x),所以该函数是奇函数;
(2)利用函数单调性的性质,结合条件关系即可判断函数的单调性;
(3)由f($\frac{1}{2}$)=1,结合条件可得f(-$\frac{4}{5}$)=-f($\frac{4}{5}$)=-2,即有f(2x+1)<f(-$\frac{4}{5}$),可得不等式组,解得即可.
解答 解:(1)函数f(x)在区间(-1,1)是奇函数.
理由:由已知令x=y=0代入方程$f(x)+f(y)=f({\frac{x+y}{1+xy}})$,
可得f(0)=0,
再令y=-x代入方程$f(x)+f(y)=f({\frac{x+y}{1+xy}})$,
可得f(x)+f(-x)=f(0)
即f(-x)=-f(x).
所以函数f(x)在区间(-1,1)是奇函数;
(2)f(x)在(-1,1)上是减函数.
理由:设-1<x1<x2<1,
则有f(x1)-f(x2)=f(x1)+f(-x2)=f($\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$),
∵-1<x1<x2<1,
∴x1-x2<0,x1x2<1,1-x1x2>0,$\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$+1=
$\frac{{x}_{1}-{x}_{2}+1-{x}_{1}{x}_{2}}{1-{x}_{1}{x}_{2}}$=$\frac{(1-{x}_{1})(1-{x}_{2})}{1-{x}_{1}{x}_{2}}$>0,
∴-1<$\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$<0,则f($\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$)>0,
即f(x1)-f(x2)=f(x1)+f(-x2)=f($\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$)>0,
则f(x1)>f(x2),
∴f(x)在(-1,1)上是减函数;
(3)f(2x+1)+2<0,即为f(2x+1)<-2,
由f($\frac{1}{2}$)=1,可得2=f($\frac{1}{2}$)+f($\frac{1}{2}$)=f($\frac{\frac{1}{2}+\frac{1}{2}}{1+\frac{1}{4}}$)=f($\frac{4}{5}$),
则f(-$\frac{4}{5}$)=-f($\frac{4}{5}$)=-2,
即有f(2x+1)<f(-$\frac{4}{5}$),
由奇函数f(x)在(-1,1)上递减,
可得$\left\{\begin{array}{l}{-1<2x+1<1}\\{2x+1>-\frac{4}{5}}\end{array}\right.$,即$\left\{\begin{array}{l}{-1<x<0}\\{x>-\frac{9}{10}}\end{array}\right.$,
即为-$\frac{9}{10}$<x<0.
则解集为(-$\frac{9}{10}$,0).
点评 本题主要考查抽象函数的应用.一般先利用赋值法求出f(0),f(1),f(-1)等等,然后判断函数的奇偶性,单调性等性质;考查定义法的运用,以及转化思想和学生的运算和推理能力,综合性较强,有一定的难度.
科目:高中数学 来源: 题型:解答题
组别 | A | B | C |
人数 | 100 | 150 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -3 | B. | $\frac{1}{8}$ | C. | 3 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com