精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)问:能否为偶函数?请说明理由;

(2)总存在一个区间,当时,对任意的实数,方程无解,当时,存在实数,方程有解,求区间.

【答案】(1)不可能是偶函数;(2).

【解析】分析:(1)根据偶函数定义,分类讨论不同情况下是否存在偶函数的可能。

(2)讨论在x取正数、负数两种不同情况下的解集;再对每个情况下对a进行分类讨论存在性成立的条件。

详解:(1)定义域为关于原点对称,

时,为偶函数,

时,,则

,则

,则

所以不可能恒等于零,

不可能是偶函数.

(2)先考虑

①当时,无解;

②当时,,只有当时,才有

③当时,可化为

所以

因为不是上式的根,所以

解得

即当时,

再考虑

①当时,无解;

②当时,,只有当时,才有

③当时,可化为

所以

因为不是上式的根,所以

解得

即当时,

综上,区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】水是地球上宝贵的资源,由于介个比较便宜在很多不缺水的城市居民经常无节制的使用水资源造成严重的资源浪费.某市政府为了提倡低碳环保的生活理念鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;
(2)若该市政府拟采取分层抽样的方法在用水量吨数为[1,1.5)和[1.5,2)之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设X为用水量吨数在[1,1.5)中的获奖的家庭数,Y为用水量吨数在[1.5,2)中的获奖家庭数,记随机变量Z=|X﹣Y|,求Z的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )

A. 有两个面平行,其余各面都是四边形的几何体叫棱柱

B. 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱

C. 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台

D. 有两个面平行,其余各面都是平行四边形的几何体叫棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项,其前项和为,对于任意正整数,都有.

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列满足,且.

①求证数列为常数列.

②求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象在处的切线过点,求的值;

(2)当时,函数上没有零点,求实数的取值范围;

(3)当时,存在实数使得,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=1时,求函数f(x)在x=e﹣1处的切线方程;
(2)当 时,讨论函数f(x)的单调性;
(3)若x>0,求函数 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 .

1)若,求实数的值;

2)若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程是ρ=
(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l的参数方程为 (t为参数)当直线l与曲线C相交于A,B两点,求| |

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为 (α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+ )= .l与C交于A、B两点. (Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;
(Ⅱ)设点P(0,﹣2),求|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案