精英家教网 > 高中数学 > 题目详情
17.设a=sin$\frac{24π}{5}$,b=cos(-$\frac{39π}{10}$),c=tan(-$\frac{43π}{12}$),则(  )
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

分析 运用诱导公式化简,a=sin$\frac{π}{5}$,b=sin$\frac{2π}{5}$,c=tan$\frac{5π}{12}$,再比较大小.

解答 解:运用诱导公式对a,b,c化简如下:
a=sin$\frac{24π}{5}$=sin$\frac{4π}{5}$=sin$\frac{π}{5}$,
b=cos(-$\frac{39π}{10}$)=cos$\frac{π}{10}$=sin$\frac{2π}{5}$,
c=tan(-$\frac{43π}{12}$)=tan$\frac{5π}{12}$,
∵$\frac{5π}{12}$>$\frac{2π}{5}$,且tan$\frac{5π}{12}$>sin$\frac{5π}{12}$,
∴tan$\frac{5π}{12}$>sin$\frac{5π}{12}$>sin$\frac{2π}{5}$>sin$\frac{π}{5}$,
即c>b>a,
故选:C.

点评 本题主要考查了三角函数诱导公式的应用,以及三角函数值的大小比较,而且用到不等关系:当x∈(0,$\frac{π}{2}$)时,tanx>sinx,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(1)椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于$\sqrt{5}$,求此椭圆的标准方程;
(2)已知双曲线2x2-y2=k的焦距等于6,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若c2>a2+b2,则△ABC必是钝角(填锐角,钝角,直角)三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an},其中a1=1,a2=2,an+2=pan(P≠0),请写出数列{an}的偶数项的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个动点由A点位移到B点,又由B点位移到C点,则动点的总位移是(  )
A.$\overrightarrow{AC}$B.$\overrightarrow{AB}$C.$\overrightarrow{BC}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的公差d不为零,其前n项和为Sn,S5=70,且a2,a7,a22成等比数列,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=$\frac{1}{{S}_{n}}$-$\frac{1}{{2}^{n}}$,数列{bn}的前n项和为Tn,求证:Tn<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于给定的正数K,定义函数fK(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,已知函数f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-2x}$(0≤x<3),对其定义域内的任意x,恒有fK(x)=f(x),则(  )
A.K上最小值为$\frac{1}{27}$B.K的最小值为3C.K的最大值为$\frac{1}{27}$D.K的最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面结论中错误的是(  )
A.具有方向的线段叫有向线段B.两个共线向量的方向相同
C.同向且等长的有向线段表示同向量D.零向量的方向不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)是定义域为R的奇函数,且f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)=-0.5.

查看答案和解析>>

同步练习册答案