精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知圆C1:x2+y2=16和圆C2:(x﹣7)2+(y﹣4)2=4,
(1)求过点(4,6)的圆C1的切线方程;
(2)设P为坐标平面上的点,且满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍.试求所有满足条件的点P的坐标.

【答案】
(1)解:若切线的斜率存在,可设切线的方程为y﹣6=k(x﹣4),

则圆心C1到切线的距离 ,解得

所以切线的方程为:5x﹣12y+52=0;

若切线的斜率不存在,则切线方程为x=4,符合题意.

综上所述,过P点的圆C1的切线方程为5x﹣12y+52=0或x=4


(2)解:设点P(a,b)满足条件,不妨设直线l1的方程为:y﹣b=k(x﹣a)(k≠0),

即kx﹣y+b﹣ak=0(k≠0),

则直线l2的方程为: ,即x+ky﹣bk﹣a=0.

因为圆C1的半径是圆C2的半径的2倍,

及直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍,

所以圆C1的圆心到直线l1的距离是圆C2的圆心到直线l2的距离的2倍,

整理得|ak﹣b|=|2a﹣14+(2b﹣8)k|

从而ak﹣b=2a﹣14+(2b﹣8)k或b﹣ak=2a﹣14+(2b﹣8)k,

即(a﹣2b+8)k=2a+b﹣14或(a+2b﹣8)k=﹣2a+b+14,

因为k的取值有无穷多个,所以

解得 ,这样点P只可能是点P1(4,6)或点

经检验点P1和点P2满足题目条件


【解析】(1)分类讨论,利用圆心到直线的距离等于半径,建立方程,求出k,即可求过点(4,6)的圆C1的切线方程;(2)设出过P点的直线l1与l2的点斜式方程,根据⊙C1和⊙C2的半径,及直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2,可得⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离2倍,故我们可以得到一个关于直线斜率k的方程,即可以求所有满足条件的点P的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|+x.
(1)当a=3时,求函数f(x)的单调递增区间;
(2)求所有的实数a,使得对任意x∈[1,4],函数f(x)的图象恒在函数g(x)=x+4图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,若f(x)= ,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确的是( )
A.奇函数的图象一定过原点
B.y=x2+1(﹣4<x≤4)是偶函数
C.y=|x+1|﹣|x﹣1|是奇函数
D.y=x+1是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据所学知识完成题目:
(1)若a、b、m、n∈R+ , 求证:
(2)利用(1)的结论,求下列问题:已知 ,求 的最小值,并求出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).

(1)求平行四边形ABCD的顶点D的坐标
(2)在△ACD中,求CD边上的高线所在直线方程;
(3)求△ACD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足不等式|x﹣A|<B(B>0,A∈R)的实数x的集合叫做A的B邻域,若a+b﹣2的a+b邻域是一个关于原点对称的区间,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断中正确的是( )
A. 是偶函数
B. 是奇函数
C. 是偶函数
D. 是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A={x|x2﹣x﹣2=0},B={x|ax﹣1=0},若A∩B=B,则a=

查看答案和解析>>

同步练习册答案