精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.
(1)单调增区间是,单调减区间是(2)当0<a<ln2时,最小值是-a;当a≥ln2时,最小值是ln2-2a.
①知函数解析式求单调区间,实质是求f′(x)>0,f′(x)<0的解区间,并注意定义域;
②先研究f(x)在[1,2]上的单调性,再确定最值是端点值还是极值;
③由于解析式中含有参数a,要对参数a进行分类讨论.
规范解答:解:(1)f′(x)=-a(x>0).(1分)
①当a≤0时,f′(x)=-a≥0,即函数f(x)的单调增区间是(0,+∞).(3分)
②当a>0时,令f′(x)=-a=0,得x=,当0<x< 时,f′(x)=>0,当x> 时,f′(x)=<0,所以函数f(x)的单调增区间是,单调减区间是.(6分)
(2)①当≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,
所以f(x)的最小值是f(2)=ln2-2a.(8分)
②当≥2,即0<a≤时,函数f(x)在区间[1,2]上是增函数,
所以f(x)的最小值是f(1)=-a.(10分)
③当1< <2,即<a<1时,函数f(x)在区间上是增函数,在区间上是减函数,
又f(2)-f(1)=ln2-a,
所以当<a<ln2时,最小值是f(1)=-a;
当ln2≤a<1时,最小值是f(2)=ln2-2a.(12分)
综上可知,当0<a<ln2时,最小值是-a;
当a≥ln2时,最小值是ln2-2a.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间上的最小值是_________________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是定义在上的函数,其中的导函数为,满足对于恒成立,则
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递减区间为(  )
A.(1,1)B.(0,1]C.[1,+∞)D.(∞,-1)∪(0,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=x3ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=-x2+blnx在区间[,+∞)上是减函数,则b的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=,其中a为正实数.
①当a时,求f(x)的极值点;②若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是 (  ).

查看答案和解析>>

同步练习册答案