【题目】已知椭圆E的中心在原点,离心率为 ,右焦点到直线x+y+ =0的距离为2.
(1)求椭圆E的方程;
(2)椭圆下顶点为A,直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.
【答案】
(1)解:设椭圆的右焦点为(c,0),依题意有 =2
又c>0,得c=
又e= = = ,∴a=
∴b= =1
∴椭圆E的方程为 =1
(2)解:椭圆下顶点为A(0,﹣1),
设弦MN的中点为P(xp,yp),xM、xN分别为点M、N的横坐标,
由直线与椭圆方程消去y,得(3k2+1)x2+6mkx+3(m2﹣1)=0,
由于直线与椭圆有两个不同的交点,所以
∴△>0,即m2<3k2+1 ①
xp=﹣ ,从而yp=kxp+m= ,kAP= =﹣
又|AM|=|AN|∴AM⊥AN,则﹣ =﹣ ,即2m=3k2+1 ②,
将②代入①得2m>m2,解得0<m<2,由②得k2= >0,解得m> ,
故所求的m取值范围是( ,2)
【解析】(1)利用右焦点到直线x+y+ =0的距离为2,建立方程求出c,利用离心率为 ,求出a,可得b,即可求椭圆E的方程;(2)设弦MN的中点为P(xp , yp),xM、xN分别为点M、N的横坐标,联立直线方程与椭圆方程,利用直线与椭圆有两个不同的交点,得到△>0,可得m2<3k2+1,通过|AM|=|AN|,判断AM⊥AN,得到2m=3k2+1,然后求得m的取值范围.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校对甲、乙两个班级进行了物理测验,成绩统计如下(每班50人):
(1)估计甲班的平均成绩;
(2)成绩不低于80分记为“优秀”.请完成下面的列联表,并判断是否有85%的把握认为:“成绩优秀”与所在教学班级有关?
(3)从两个班级,成绩在的学生中任选2人,记事件为“选出的2人中恰有1人来自甲班”.求事件的概率.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗原料2千克, 原料3千克;生产乙产品1桶需耗原料2千克, 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗原料都不超过12千克的条件下,生产产品、产品的利润之和的最大值为( )
A. 1800元 B. 2100元 C. 2400元 D. 2700元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;
(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取3个点,记落在直线右下方的点的个数为,求的分布列以及期望.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=loga(1﹣x)+loga(x+3),(0<a<1).
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为﹣2,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,且椭圆过点,记椭圆的左、右顶点分别为,点是椭圆上异于的点,直线与直线分别交于点.
(1)求椭圆的方程;
(2)过点作椭圆的切线,记,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(0,﹣4),且倾斜角为 ,圆C的极坐标方程为ρ=4cosθ.
(1)求直线l的参数方程和圆C的直角坐标方程;
(2)若直线l和圆C相交于A、B两点,求|PA||PB|及弦长|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50 名,其中每天玩微信超过6 小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“微信控”与”性别“有关?
(2)现从调查的女性用户中按分层抽样的方法选出5 人并从选出的5 人中再随机抽取3 人赠送200 元的护肤品套装,记这3 人中“微信控”的人数为X,试求X 的分布列与数学期望.
参考公式:,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com