精英家教网 > 高中数学 > 题目详情

【题目】已知动点P到定点的距离与点P到定直线的距离之比为

1)求动点P的轨迹C的方程;

2)设MN是直线l上的两个点,点E是点F关于原点的对称点,若,求 | MN | 的最小值.

【答案】1= 122

【解析】

1)用坐标表示条件,化简即得轨迹方程(2)先设坐标,再用坐标表示| MN |,根据条件得坐标关系,代入| MN |表达式,最后根据基本不等式求最值

1)设点Pxy

依题意,有

整理得:= 1

所以动点P的轨迹方程为= 1

2E与点F关于原点对称

∴E(0)

∵MNl上的两点

可设M(2y1) N(2y2)

(不妨设,y1y2

3y1·(y2)0

6 + y1y20

∴y2=-

由于y1y2∴y10y20

∴| MN |y1y2y1+≥22

当且仅当y1y2=-时,取号,故| MN |的最小值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为,第七个音的频率为,则

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A. ”是“”成立的充分不必要条件

B. 命题,则

C. 为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40

D. 已知回归直线的斜率的估计值为1.23,样本点的中心为,则回归直线方程为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】作为交通重要参与者的行人,闯红灯通行频有发生,带来了较大的交通安全隐患.在某十字路口,交警部门从穿越该路口的行人中随机抽取了200人进行调查,得到不完整的列联表如图所示:

年龄低于30

年龄不低于30

合计

闯红灯

60

80

未闯红灯

80

合计

200

1)将列联表补充完整;

2)是否有99.9%的把握认为行人是否闯红灯与年龄有关.

参考公式及数据:,其中.

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某圆的极坐标方程为

(1)圆的普通方程和参数方程

(2)圆上所有点的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线是以点为圆心的圆的一部分,其中是圆的切线,且,曲线是抛物线的一部分,,且恰好等于圆的半径.

1)若米,米,求的值;

2)若体育馆侧面的最大宽度不超过75米,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程所表示的曲线为,则有以下几个命题:

①当时,曲线表示焦点在轴上的椭圆;

②当时,曲线表示双曲线;

③当时,曲线表示圆;

④存在,使得曲线为等轴双曲线 .

以上命题中正确的命题的序号是_____.

查看答案和解析>>

同步练习册答案