精英家教网 > 高中数学 > 题目详情

【题目】教育部记录了某省20082017年十年间每年自主招生录取的人数为方便计算,2008年编号为12009年编号为22017年编号为10,以此类推数据如下:

年份编号

1

2

3

4

5

6

7

8

9

10

人数

3

5

8

11

13

14

17

22

30

31

根据前5年的数据,利用最小二乘法求出y关于x的回归方程,并计算第8年的估计值和实际值之间的差的绝对值;

根据所得到的回归方程预测2018年该省自主招生录取的人数.

其中

【答案】8年的估计值和实际值之间差的绝对值为.

【解析】

由前年的数据求出回归方程,然后计算第年的估计值和实际值之间的差的绝对值

代入求出估计值

由表中数据可得,

关于x的回归方程为

时,

则第8年的估计值和实际值之间差的绝对值为

时,

预测2018年该省自主招生录取的人数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域和值域;

(2)设为实数),求时的最大值

(3)对(2)中,若所有的实数恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分)选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ

)把C1的参数方程化为极坐标方程;

)求C1C2交点的极坐标(ρ≥0,0≤θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l经过定点P(3,5),倾斜角为.

(1)写出直线l的参数方程和曲线C的标准方程.

(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=
(1)求A∩B;
(2)若f(x)=log2x﹣ ,x∈A∩B求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx+ mx2﹣(m+1)x+1.
(1)若g(x)=f'(x),讨论g(x)的单调性;
(2)若f(x)在x=1处取得极小值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.

对服务好评

对服务不满意

合计

对商品好评

80

40

120

对商品不满意

70

10

80

合计

150

50

200

(1) 是否有的把握认为商品好评与服务好评有关? 请说明理由;

(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD中,PA⊥BD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b,AC与BD交于点O,M为OC的中点.

(1)求证:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值为 ,求a:b的值.

查看答案和解析>>

同步练习册答案