精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体ABCDEF中,ABCD是正方形,BF平面ABCDDE平面ABCDBF=DE,点M为棱AE的中点.

1)求证:平面BMD平面EFC

2)若AB=1BF=2,求三棱锥A-CEF的体积.

【答案】(1)见解析;

(2)

【解析】

1)设ACBD交于点N,则NAC的中点,可得MNEC.由线面平行的判定,可得MN∥平面EFC.再由BF⊥平面ABCDDE⊥平面ABCD,且BF=DE,可得BDEF为平行四边形,得到BDEF.由面面平行的判定,可得平面BDM∥平面EFC

2)连接ENFN.在正方形ABCD中,ACBD,再由BF⊥平面ABCD,可得BFAC.从而得到AC⊥平面BDEF,然后代入棱锥体积公式求解.

(1)证明:设ACBD交于点N,则NAC的中点,而M为AE中点

MNEC

MN平面EFCEC平面EFC

MN平面EFC

BF平面ABCDDE平面ABCD,且BF=DE

BFDEBF=DE

BDEF为平行四边形,BDEF

BD平面EFCEF平面EFC

BD平面EFC

MNBD=N

平面BDM平面EFC

2)解:连接ENFN.在正方形ABCD中,ACBD

BF平面ABCDBFAC

BFBD=B

AC平面BDEF,且垂足为N

三棱锥A-CEF的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,是抛物线在第一象限内的点,且

(I) 点的坐标;

(II)为圆心的动圆与轴分别交于两点,延长分别交抛物线两点;

①求直线的斜率;

②延长轴于点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当a=1时,若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴与短轴之和为6,椭圆上任一点到两焦点 的距离之和为4.

(1)求椭圆的标准方程;

(2)若直线 与椭圆交于 两点, 在椭圆上,且 两点关于直线对称,问:是否存在实数,使,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.


优秀

非优秀

合计

甲班

10



乙班


30


合计



110

1)请完成上面的列联表;

2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点C是圆心为O半径为1的半圆弧上从点A数起的第一个三等分点,是直径,,直线平面.

1)证明:

2)若M的中点,求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为,满足,其中.

⑴若),求证:数列是等比数列;

⑵若数列是等比数列,求的值;

⑶若,且,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近期前期广告投入量(单位:万元)和收益(单位:万元)的数据。对这些数据作了初步处理,得到了下面的散点图(共个数据点)及一些统计量的值.为了进一步了解广告投入量对收益的影响,公司三位员工①②③对历史数据进行分析,查阅大量资料,分别提出了三个回归方程模型:

根据 ,参考数据: .

(1)根据散点图判断,哪一位员工提出的模型不适合用来描述之间的关系?简要说明理由.

(2)根据(1)的判断结果及表中数据,在余下两个模型中分别建立收益关于投入量的关系,并从数据相关性的角度考虑,在余下两位员工提出的回归模型中,哪一个是最优模型(即更适宜作为收益关于投入量的回归方程)?说明理由;

附:对于一组数据 ,…, ,其回归直线的斜率、截距的最小二乘估计以及相关系数分别为:

其中越接近于,说明变量的线性相关程度越好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据调查:人类在能源利用与森林砍伐中使CO2浓度增加.据测,2015年,2016年,2017年大气中的CO2浓度分别比2014年增加了1个单位,3个单位,6个单位.若用一个函数模拟每年CO2浓度增加的单位数y与年份增加数x的关系,模拟函数可选用二次函数(其中为常数)或函数 (其中abc为常数),又知2018年大气中的CO2浓度比2014年增加了16.5个单位,请问用以上哪个函数作模拟函数较好?

查看答案和解析>>

同步练习册答案