精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为

1)写出直线和曲线的直角坐标方程;

2)过动点且平行于的直线交曲线两点,若,求动点到直线的最近距离.

【答案】1)直线;曲线;(2

【解析】

1)运用极坐标和直角坐标的关系,以及两角差的正弦公式,化简可得所求直角坐标方程;

2)设出过且平行于的直线的参数方程,代入抛物线方程,化简整理,运用韦达定理和参数的几何意义,运用点到直线的距离公式和二次函数的最值求法,可得所求最值.

1)直线的极坐标方程为,即为

,可得,即

曲线的极坐标方程为,即为

可得

2)设过点且平行于的直线的参数方程设为为参数),

代入抛物线方程,可得

对应的参数分别为,可得

,即有

,可得,即

到直线的距离:

时,动点到直线的最近距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD-A1B1C1D1中,ABCDAB1BC,且AA1AB.求证:

1AB平面D1DCC1

2AB1⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下面结论正确的是(

A.上各点的横坐标变为原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

B.上各点的横坐标变为原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

C.向左平移个单位长度,再把得到的曲线上各点的横坐标变为原来的倍.纵坐标不变,得到曲线

D.向左平移个单位长度,再把得到的曲线上各点的横坐标变为原来的倍,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取到极值为

1)求函数的单调区间;

2)若不等式上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为

1)写出直线和曲线的直角坐标方程;

2)过动点且平行于的直线交曲线两点,若,求动点到直线的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.

1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;

2)若过点(极坐标)且倾斜角为的直线l与曲线C交于MN两点,弦MN的中点为P,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的最大值;

2)当时,讨论极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】24届冬季奥林匹克运动会将于2022年在北京-张家口举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高变成如右所示的茎叶图(单位: ):若身高在以上(包括)定义为高个子,身高在以下(不包括)定义为非高个子,且只有女高个子才能担任礼仪小姐

1)如果分层抽样的方法从高个子非高个子中提取5人,再从这5人中选2人,那么至少有一人是高个子的概率是多少?

2)若从所有高个子中选3名志愿者,用表示所选志愿者中能担任礼仪小姐的人数,试写出的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体中,.

1)求证:平面平面

2)求二面角EBDF的余弦值.

查看答案和解析>>

同步练习册答案