【题目】
已知公比为整数的正项等比数列满足: , .
(1)求数列的通项公式;
(2)令,求数列的前项和.
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,则对于命题p:abcd∈(0,1)和命题q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判断,正确的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当 时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的一系列对应值如下表:
-1 | 1 | 3 | 1 | -1 | 1 | 3 |
(1)根据表格提供的数据画出函数的图像并求出函数解析式;
(2)根据(1)的结果,若函数的周期为,当时,方程恰有两个不同的解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列、,其中, ,数列满足,,数列满足.
(1)求数列,的通项公式;
(2)是否存在自然数,使得对于任意有恒成立?若存在,求出的最小值;
(3)若数列满足,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中,记函数的定义域为.
(1)求函数的定义域;
(2)若函数的最大值为2,求的值;
(3)若对于内的任意实数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在区间(2,4)上存在极大值点,则实数a的取值范围是( )
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com