精英家教网 > 高中数学 > 题目详情

【题目】

已知公比为整数的正项等比数列满足:

1)求数列的通项公式;

2)令,求数列的前项和

【答案】(1) .

(2) .

【解析】试题分析:第一问根据等比数列的通项公式以及性质,结合题的条件,转化为关于首项和公比的等量关系式,从而求得结果;第二问利用错位相减法求和从而求得结果.

1)设等比数列的公比为

,有可得…………………1

可得…………………2

两式相除可得: …………………3

整理为:

,且为整数,可解得,故…………………5

数列的通项公式为…………………7

2)由

…………………9

两式作差有: …………………11

…………………14

…………………15

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,则对于命题p:abcd∈(0,1)和命题q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判断,正确的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当 时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是(
A.
B.
C.
D.[2﹣ln2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

-1

1

3

1

-1

1

3

(1)根据表格提供的数据画出函数的图像并求出函数解析式;

(2)根据(1)的结果,若函数的周期为,当时,方程恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其中, ,数列满足,数列满足

(1)求数列的通项公式;

(2)是否存在自然数,使得对于任意恒成立?若存在,求出的最小值;

(3)若数列满足求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中记函数的定义域为.

(1)求函数的定义域

(2)若函数的最大值为2,求的值;

(3)若对于内的任意实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=[x3+3x2+(a+6)x+6﹣a]ex在区间(2,4)上存在极大值点,则实数a的取值范围是(
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]

查看答案和解析>>

同步练习册答案