【题目】若,设其定义域上的区间().
(1)判断该函数的奇偶性,并证明;
(2)当时,判断函数在区间()上的单调性,并证明;
(3)当时,若存在区间(),使函数在该区间上的值域为,求实数的取值范围.
【答案】(1)奇函数,证明见解析;(2)在()为增函数,证明见解析;(3)
【解析】
(1)首先求出函数的定义域,再根据定义法证明函数的奇偶性;
(2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可;
(3)由(1)得,当时,在为减函数,故若存在定义域,,使值域为,则有,从而问题可转化为,是方程的两个解,进而问题得解.
解:(1)因为
由解得或,即的定义域为,关于原点对称.
为奇函数.
(2)在()为增函数;
证明:的定义域为,则.
设,,则,且,,
,
即,
因为时,所以,即,
所以在()为增函数.
(3)由(1)得,当时,在()为递减函数,
若存在定义域(),使值域为,
则有
,是方程在上的两个相异的根,
即,
即在上的两个相异的根,
令,
则在有2个零点,
解得
即当时,,
当时,方程组无解,即()不存在.
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中不正确的是( )
A.若两个平面有一个公共点,则它们有无数个公共点
B.若已知四个点不共面,则其中任意三点不共线
C.若点既在平面内,又在平面内,则与相交于,且点在上
D.任意两条直线不能确定一个平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支纪年法,源于中国中国自古便有十天干与十二地支十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”依此类推已知1949年为“己丑”年,那么到新中国成立80周年时,即2029年为( )
A.己丑年B.己酉年C.壬巳年D.辛未年
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市收集并整理了该市2019年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.( )
已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论正确的是
A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温
C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0 ℃的月份有4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像如图所示,关于有以下5个结论:
(1);(2),;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是( )
A.(1)(2)(3)B.(1)(2)(4)(5)C.(1)(2)(4)D.(1)(3)(4)(5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一张矩形白纸ABCD,AB=10,AD=,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是____________(写出所有正确命题的序号)
①当平面ABE∥平面CDF时,AC∥平面BFDE
②当平面ABE∥平面CDF时,AE∥CD
③当A、C重合于点P时,PG⊥PD
④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com