精英家教网 > 高中数学 > 题目详情

【题目】,设其定义域上的区间.

1)判断该函数的奇偶性,并证明;

2)当时,判断函数在区间)上的单调性,并证明;

3)当时,若存在区间),使函数在该区间上的值域为,求实数的取值范围.

【答案】1)奇函数,证明见解析;(2)为增函数,证明见解析;(3

【解析】

1)首先求出函数的定义域,再根据定义法证明函数的奇偶性;

2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可;

3)由(1)得,当时,为减函数,故若存在定义域,使值域为,则有,从而问题可转化为是方程的两个解,进而问题得解.

解:(1)因为

解得,即的定义域为,关于原点对称.

为奇函数.

2)为增函数;

证明:的定义域为,则

,则,且

因为时,所以,即

所以)为增函数.

3)由(1)得,当时,)为递减函数,

若存在定义域),使值域为

则有

是方程上的两个相异的根,

上的两个相异的根,

2个零点,

解得

即当时,

时,方程组无解,即)不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中不正确的是( )

A.若两个平面有一个公共点,则它们有无数个公共点

B.若已知四个点不共面,则其中任意三点不共线

C.若点既在平面内,又在平面内,则相交于,且点

D.任意两条直线不能确定一个平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天干地支纪年法,源于中国中国自古便有十天干与十二地支十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由起,地支由起,比如说第一年为甲子,第二年为乙丑,第三年为丙寅依此类推,排列到癸酉后,天干回到重新开始,即甲戌”“乙亥,之后地支回到重新开始,即丙子依此类推已知1949年为己丑年,那么到新中国成立80周年时,即2029年为(

A.己丑年B.己酉年C.壬巳年D.辛未年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市收集并整理了该市20191月份至10月份各月最低气温与最高气温(单位:)的数据,绘制了下面的折线图.

已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论正确的是

A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温

C.月温差(最高气温减最低气温)的最大值出现在1D.最低气温低于0 的月份有4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A的长度均大于200米,现在边界APAQ处建围墙,在PQ处围竹篱笆.

1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?

2)已知AP段围墙高1米,AQ段围墙高1.5米,造价均为每平方米100.若围围墙用了20000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像如图所示,关于有以下5个结论:

1;(2;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是(

A.(1)(2)(3)B.(1)(2)(4)(5)C.(1)(2)(4)D.(1)(3)(4)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张矩形白纸ABCD,AB=10,AD=,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是____________(写出所有正确命题的序号)

①当平面ABE∥平面CDF时,AC∥平面BFDE

②当平面ABE∥平面CDF时,AE∥CD

③当A、C重合于点P时,PG⊥PD

④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150

查看答案和解析>>

同步练习册答案