精英家教网 > 高中数学 > 题目详情

【题目】定义在(0, )上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)tanx成立,则( )
A.f( )> f(
B.f(1)<2f( )sin1
C.f( )>f(
D. f( )<f(

【答案】D
【解析】解:因为x∈(0, ),所以sinx>0,cosx>0.
由f(x)<f′(x)tanx,得f(x)cosx<f′(x)sinx.
即f′(x)sinx﹣f(x)cosx>0.
令g(x)= x∈(0, ),则
所以函数g(x)= 在x∈(0, )上为增函数,
,即 ,所以

故选D.
【考点精析】关于本题考查的基本求导法则,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为(
A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场柜台销售某种产品,每件产品的成本为10元,并且每件产品需向该商场交a元(3≤a≤7)的管理费,预计当每件产品的售价为x元(20≤x≤25)时,一天的销售量为(x﹣30)2件. (Ⅰ)求该柜台一天的利润f(x)(元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该柜台一天的利润f(x)最大,并求出f(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时有2f(x)+xf′(x)>x2 , 则不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集为(
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意平面向量 =(x,y),把 绕其起点沿逆时针方向旋转θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2 ,1).把点B绕点A逆时针方向旋转 角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转 后得到的点的轨迹方程是曲线y= ,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0, )的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的不等式上恒成立,求的取值范围;

(2)设函数,若上有两个不同极值点,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某刻考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行偏差分析,决定从全班40位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如表:

(1)已知之间具有线性相关关系,求关于的线性回归方程;

(2)若这次考试该班数学平均分为120分,物理平均分为92,试预测数学成绩126分的同学的物理成绩.

参考公式:

参考数据:

查看答案和解析>>

同步练习册答案