精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+4x+3.
(1)若f(a+1)=0,求a的值;
(2)若g(x)=f(x)+cx为偶函数,求c;
(3)证明:函数f(x)在区间[-2,+∞)上是增函数.
考点:函数奇偶性的性质,函数单调性的判断与证明
专题:函数的性质及应用
分析:本题(1)利用函数解析式,得到关于a的方程,解方程,求出a的值;(2)利用函数奇偶性得到g(-x)=g(x),化简得到含有c的恒等式,从而fibmc的值;(3)利用函数的单调性定义,证明函数在区间上单调递增,注意证明的步骤.
解答: 解:∵函数f(x)=x2+4x+3,
∴f(a+1)=(a+1)2+4(a+1)+3,
∵f(a+1)=0,
∴(a+1)2+4(a+1)+3=0,
∴a2+6x+8=0,
∴(a+2)(a+4)=0,
∴a=-2或a=-4.
(2)∵函数f(x)=x2+4x+3,
∴g(x)=f(x)+cx=x2+(c+4)x+3.
∵函数g(x)为偶函数,
∴g(-x)=g(x),
∴(-x)2-(c+4)x+3=x2+(c+4)x+3,
∴2(c+4)x=0对于任意x∈R恒成立,
∴c=-4.
(3)在区间[-2,+∞)上任取x1,x2,且x1<x2
f(x2)-f(x1)=x22+4x2+3-(x12+4x1+3)
=(x2-x1)(x2+x1)+4(x2-x1
=(x2-x1)(x2+x1+4),
∵-2≤x1<x2
∴x2-x1>0,x2+x1+4>0,
∴(x2-x1)(x2+x1+4)>0,
∴f(x2)-f(x1)>0,
∴f(x2)>f(x1).
∴函数f(x)在区间[-2,+∞)上是增函数.
点评:本题考查了函数与方程、函数的奇偶性定义、函数的单调性定义,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x
1
-n2+2n+3
(n∈Z)的图象在[0,+∞)上单调递增,解不等式f(x2-x)>f(x+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x-2,x∈(-3,1],则f(x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:tan
α
2
=
sinα
1+cosα
=
1-cosα
sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+k(k≠-1,n∈N*).
(1)设bn=an+1-2an,求证:{bn}是等比数列:
(2)设cn=
an
2n
,且{cn}是公差为1的等差数列,求k及Sn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2-2x-16≤0},B={x|C
 
x
5
≤5},则A∩B中元素个数为(  )
A、6个B、4个C、2个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数z=
k-i
i
在复平面内对应的点在第三象限,则实数k的范围是(  )
A、k≥0B、k>0
C、k≤0D、k<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
m
2x
,g(x)=x-2m,其中m∈R,e=2.71828…为自然对数的底数.
(Ⅰ)当m=1时,求函数f(x)的极小值;
(Ⅱ)对?x∈[
1
e
,1],是否存在m∈(
1
2
,1),使得f(x)>g(x)+1成立?若存在,求出m的取值范围;若不存在,请说明理由;
(Ⅲ)设F(x)=f(x)g(x),当m∈(
1
2
,1)时,若函数F(x)存在a,b,c三个零点,且a<b<c,求证:0<a<
1
e
<b<1<c.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2px(p>0)的轴和它的准线交于E点,经过交点F的直线交抛物线于P、Q两点(直线PQ与抛物线的轴不垂直),则∠FEP与∠QEF的大小关系为(  )
A、∠FEP>∠QEF
B、∠FEP<∠QEF
C、∠FEP=∠QEF
D、不确定

查看答案和解析>>

同步练习册答案