精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinxcosx-cos2x+
1
2

(I)求函数f(x)的对称中心和单调区间;
(II)已知△ABC内角A、B、C的对边分别为a,b,3,且f(C)=1,若向量
m
=(1,sinA)与
n
=(2,sinB)
共线,求a、b的值.
分析:(I)利用二倍角公式、辅助角公式化简函数,再利用正弦函数的性质,可求函数f(x)的对称中心和单调区间;
(II)先求C,再利用向量共线及正弦定理、余弦定理,建立方程,即可求a、b的值.
解答:解:(I)f(x)=
3
sinxcosx-cos2x+
1
2
=
3
2
sin2x-
1
2
cos2x
=sin(2x-
π
6

2x-
π
6
=kπ
,则x=
2
+
π
12
,∴函数f(x)的对称中心为(
2
+
π
12
,0)(k∈Z);
2x-
π
6
∈[-
π
2
+2kπ,
π
2
+2kπ]
,可得x∈[kπ-
π
6
,kπ+
π
3
]
,∴函数的单调增区间为[kπ-
π
6
,kπ+
π
3
]
(k∈Z);令2x-
π
6
∈[
π
2
+2kπ,
2
+2kπ]
,可得x∈[kπ+
π
3
,kπ+
6
]
,∴函数的单调减区间为[kπ+
π
3
,kπ+
6
]
(k∈Z);
(II)∵f(C)=1,∴sin(2C-
π
6
)=1,∵0<C<π,∴C=
π
3

∵向量
m
=(1,sinA)与
n
=(2,sinB)
共线,
∴sinB=2sinA,∴b=2a
∵c=3,∴由余弦定理可得a2+b2-ab=9
∴a=
3
,b=2
3
点评:本题考查三角函数的化简,考查三角函数的性质,考查向量知识的运用,考查正弦、余弦定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案