精英家教网 > 高中数学 > 题目详情

【题目】如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.

(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为

【答案】(I)证明:∵平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,ED⊥AD,ED平面ADEF, ∴ED⊥平面ABCD,∵AB平面ABCD,
∴ED⊥AD,
∵AB=1,AD=2,∠BAD=60°,
∴BD= =
∴AB2+BD2=AD2 , ∴AB⊥BD,
又BD平面BDE,ED平面BDE,BD∩ED=D,
∴AB⊥平面BDE,又AB平面ABE,
∴平面ABE⊥平面EBD.
(II)解:以B为原点,以BA,BD为x轴,y轴建立空间直角坐标系B﹣xyz,
则A(1,0,0),B(0,0,0),C(﹣ ,0),D(0, ,0),E(0, ,2),
F(1,0,1),则 =( ,0), =(0,0,2), =(1,0,0), =(1,﹣ ,﹣1),
=(λ,﹣ λ,﹣λ)(0≤λ≤1),则 = + =(λ, ,2﹣λ),
设平面CDE的法向量为 =(x1 , y1 , z1),平面ABM的法向量为 =(x2 , y2 , z2),


令y1=1得 =(﹣ ,1,0),令y2=2﹣λ得 =(0,2﹣λ, ),
∴cos< >= = = ,解得λ=
∴当M为EF的中点时,平面MAB与平面ECD所成的角的余弦值为

【解析】(I)计算BD,根据勾股定理逆定理得出AB⊥BD,再根据ED⊥平面ABCD得出ED⊥AB,故而AB⊥平面ADEF,从而平面ABE⊥平面EBD;(II)建立空间坐标系,设 ,求出两平面的法向量,令法向量的夹角余弦值的绝对值等于 ,解出λ即可得出结论.
【考点精析】认真审题,首先需要了解平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)上的点到右焦点F的最小距离是 ﹣1,F到上顶点的距离为 ,点C(m,0)是线段OF上的一个动点.
(1)求椭圆的方程;
(2)是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得( + )⊥ ,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:

中学编号

1

2

3

4

5

6

7

8

原料采购加工标准评分x

100

95

93

83

82

75

70

66

卫生标准评分y

87

84

83

82

81

79

77

75

(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)

(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.

参考公式:

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意x∈(0,π),不等式ex﹣ex>asinx恒成立,则实数a的取值范围是(
A.[﹣2,2]
B.(﹣∞,e]
C.(﹣∞,2]
D.(﹣∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

(1)求圆关于直线对称的圆的标准方程;

(2)过点的直线被圆截得的弦长为8,求直线的方程;

(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:

使用智能手机

不使用智能手机

合计

学习成绩优秀

学习成绩不优秀

合计

(1)根据以上统计数据,你是否有 的把握认为使用智能手机对学习有影响?

(2)为了进一步了解学生对智能手机的使用习惯,现在对以上使用智能手机的高中时采用分层抽样的方式,抽取一个容量为 的样本,若抽到的学生中成绩不优秀的比成绩优秀的多 人,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2aln x.

(1)当a=1时,求函数f′(x)的最小值;

(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足:对任意的实数存在非零常数都有成立.

(1)当求函数在闭区间上的值域;

(2)设函数的值域为,证明:函数为周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有成立,且.

(1)的值;

(2)的解析式,并用定义法证明单调递增;

(3)已知,设P,不等式恒成立,Q:时,是单调函数。如果满足P成立的的集合记为A,满足Q成立的集合记为B,求(R为全集)。

查看答案和解析>>

同步练习册答案