【题目】在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2 ,D是AA1的中点,BD与AB1交于点O,且CO⊥平面ABB1A1 .
(1)证明:CD⊥AB1;
(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.
【答案】
(1)证明:∵D是矩形AA1的中点,∴AD= AA1=
∴ = ,∴△DAB∽△ABB1,∴∠ABD=∠AB1B,
∵∠BAB1+∠AB1B=90°,∴∠BAB1+∠ABD=90°,∴BD⊥AB1.
∵CO⊥平面ABB1A1,AB1平面ABB1A1,
∴CO⊥AB1,又CO平面BCD,BD平面BCD,CO∩BD=O,
∴AB1⊥平面BCD,∵CD平面BCD,
∴CD⊥AB1
(2)解:以O为原点,以OD,OB1,OC为坐标轴建立空间直角坐标系如图所示:
则A(0,﹣ ,0),B(﹣ ,0,0),C(0,0, ),D( ,0,0).
∴ =( ,0,﹣ ), =(﹣ , ,0), =(0, , ).
设平面ABC的法向量为 =(x,y,z),则 ,
即 ,令x=1得 =(1, ,﹣ ).
∴ = ,∴cos< >= = .
∴直线CD与平面ABC所成角的正弦值为 .
【解析】(1)根据线面垂直的性质定理得到线线垂直,再由线线垂直得到线面垂直进而得到线线垂直。(2)根据题意建立空间直角坐标系如图所示,求出各个点的坐标进而得到各个向量的坐标,找到平面ABC的法向量继而求出其与向量AD的数量积再根据数量积公式求出cos的值,进而可得直线CD与平面ABC所成角的正弦值。
【考点精析】通过灵活运用棱柱的结构特征和空间角的异面直线所成的角,掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则即可以解答此题.
科目:高中数学 来源: 题型:
【题目】某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如图所示.
销售单价/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均销售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},则A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系: , .当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.
(1)求平衡价格和平衡需求量;
(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积.
①当市场价格取何值时,市场销售额取得最大值;
②当市场销售额取得最大值时,为了使得此时的市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数是奇函数
(Ⅰ)求值;
(Ⅱ)判断并证明该函数在定义域上的单调性;
(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;
(Ⅳ)设关于的函数有零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示, 是圆柱的母线, 是圆柱底面圆的直径, 是底面圆周上异于的任意一点, .
(1)求证: ;
(2)求三棱锥体积的最大值,并写出此时三棱锥外接球的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线过点P(﹣3 ,4),它的渐近线方程为y=± x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com