分析 (1)三棱锥B1-A1BC1的体积V=${V}_{B-{A}_{1}{B}_{1}{C}_{1}}$,由此能求出结果.
(2)以B为原点,BA为x轴,BC为y轴,BB1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1B与AC所成角的余弦值.
解答 解:(1)∵在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=4,∠ABC=90°,
∴△A1B1C1的面积S=$\frac{1}{2}×2×\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴三棱锥B1-A1BC1的体积:
V=${V}_{B-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{3}×S×A{A}_{1}$=$\frac{1}{3}×2\sqrt{3}×4$=$\frac{8\sqrt{3}}{3}$.
(2)以B为原点,BA为x轴,BC为y轴,BB1为z轴,建立空间直角坐标系,
则A1(2,0,4),A(2,0,0),B(0,0,0),C(0,2$\sqrt{3}$,0),
∴$\overrightarrow{{A}_{1}B}$=(-2,0,-4),$\overrightarrow{AC}$=(-2,2$\sqrt{3}$,0),
设异面直线A1B与AC所成角为θ,
则cosθ=$\frac{|\overrightarrow{{A}_{1}B}•\overrightarrow{AC}|}{|\overrightarrow{{A}_{1}B}|•|\overrightarrow{AC}|}$=$\frac{4}{\sqrt{20}•\sqrt{16}}$=$\frac{\sqrt{5}}{10}$.
∴异面直线A1B与AC所成角的余弦值为$\frac{\sqrt{5}}{10}$.
点评 本题考查三棱锥的体积的求法,考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,1) | B. | [-2,1) | C. | [-1,2) | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com