精英家教网 > 高中数学 > 题目详情

【题目】已知pxRx2+2xaqx24x+3≤0r:(xm[x﹣(m+1]≤0

1)若命题p的否定是假命题,求实数a的取值范围;

2)若qr的必要条件,求实数m的取值范围.

【答案】(1) (﹣,﹣1],(2) [12]

【解析】

1)由命题间的关系,即求命题为真时,的取值范围,利用二次函数的性质,可求得结果;

1)求出命题为真时,的集合,qr的必要条件,转化为集合间关系,即可求出的取值范围.

pxRx2+2xaqx24x+3≤0r:(xm[x﹣(m+1]≤0

∴根据二次函数的性质可知,x2+2x的最小值﹣1

Pa1

x24x+3≤0可得1≤x≤3

由(xm[x﹣(m+1]≤0,可得mxm+1

qA[13]rB[mm+1]

1)若命题p的否定是假命题,即p为真命题,

a的范围(﹣,﹣1]

2)若qr的必要条件,则rq,从而有BA

解可得,1≤m≤2

m的范围[12]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,分别是椭圆的左,右焦点,点P是椭圆E上一点,满足轴,

1)求椭圆E的离心率;

2)过点的直线l与椭圆E交于两点AB,若在椭圆B上存在点Q,使得四边形OAQB为平行四边形,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】612日,上海市发布了《上海市生活垃圾分类投放指南》,将人们生活中产生的大部分垃圾分为七大类.某幢楼前有四个垃圾桶,分别标有可回收物有害垃圾湿垃圾干垃圾,小明同学要将鸡骨头(湿垃圾)、贝壳(干垃圾)、指甲油(有害垃圾)、报纸(可回收物)全部投入到这四个桶中,若每种垃圾投放到每个桶中都是等可能的,那么随机事件“4种垃圾中至少有2种投入正确的桶中的概率是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A学校且1名为女棋手,另外4名来自B学校且2名为女棋手从这7名队员中随机选派4名队员参加第一阶段的比赛

求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;

X为选出的4名队员中AB两校人数之差的绝对值,求随机变量X的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,矩形平面,且,.

1)求证:

2)求证:∥平面

3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(Ⅰ)若函数存在两个零点,求的取值范围;

(Ⅱ)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数是一种反映和评价空气质量的方法,指数与空气质量对应如下表所示:

如图是某城市2018年12月全月的指数变化统计图.

根据统计图判断,下列结论正确的是( )

A. 整体上看,这个月的空气质量越来越差

B. 整体上看,前半月的空气质量好于后半月的空气质量

C. 数据看,前半月的方差大于后半月的方差

D. 数据看,前半月的平均值小于后半月的平均值

查看答案和解析>>

同步练习册答案