A. | 命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0”. | |
B. | 对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0. | |
C. | 若p∧q为假命题,则p,q中至少一个为假命题. | |
D. | “$θ=2kπ+\frac{π}{6}$”是“$sinθ=\frac{1}{2}$”的充要条件. |
分析 A,根据命题与其逆否命题的定义判定.
B,根据含有量词的命题的否定定义判定,
C,根据p∧q命题的定义判定;
D,“$θ=2kπ+\frac{π}{6}$”一定有“$sinθ=\frac{1}{2}$”,但“$sinθ=\frac{1}{2}$”,不一定有“$θ=2kπ+\frac{π}{6}$”.
解答 解:对于A,命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0”正确.
对于B,对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0.正确;
对于C,若p∧q为假命题,则p,q中至少一个为假命题,正确;
对于D,“$θ=2kπ+\frac{π}{6}$”一定有“$sinθ=\frac{1}{2}$”,但“$sinθ=\frac{1}{2}$”,不一定有$θ=2kπ+\frac{π}{6}$”,故错.
故选:D
点评 本题考查了命题真假的判定,涉及到了命题的四种形式、含有量词的命题的否定、充要条件,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{15}{17}$ | B. | $\frac{16}{17}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com