精英家教网 > 高中数学 > 题目详情

【题目】已知数列是等比数列, 为数列的前项和,且

(1)求数列的通项公式.

(2)设为递增数列.若求证:

【答案】(1)当时, ;当时, ;(2)证明过程见解析;

【解析】试题分析:1设数列的公式为 从而可得 求出 的值,从而可得结果;(2讨论可知 考虑为递增数列从而可得 利用裂项相消法求和再用放缩法证明即可.

试题解析:(1)设等比数列的公比为.由已知:

,解得

时,

时,

(2) 为递增数列, 不合题意

时, 符合题意.

【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②

;③

;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如下表:

1判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;

2现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.

3已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为,求布列及数学期望.

男性公务员

女性公务员

总计

有意愿生二胎

30

15

45

无意愿生二胎

20

25

45

总计

50

40

90

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生其中男女生人数恰好各占一半进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:,得到如图所示的频率分布直方图:

写出的值;

在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取3人 ,并用表示其中男生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.

(1)求椭圆的方程;

(2)是椭圆的左顶点,经过左焦点的直线与椭圆交于两点,求的面积之差的绝对值的最大值.为坐标原点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数满足,且在上是减函数,若是锐角三角形的两个内角,则下列各式一定成立的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生其中男女生人数恰好各占一半进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:,得到如图所示的频率分布直方图:

(1)写出的值;

(2)求抽取的40名学生中月上网次数不少于15次的学生人数;

在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人 ,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)时,求曲线的切线方程;

(2)时,若对任意不等式成立,求实数取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二奥赛班名学生的物理测评成绩满分120分分布直方图如下,已知分数在100-110的学生数有21人

1求总人数和分数在110-115分的人数

2现准备从分数在110-115的名学生女生占中任选3人,求其中恰好含有一名女生的概率;

3为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩满分150分,物理成绩进行分析,下面是该生7次考试的成绩

数学

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?

附:对于一组数据……,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形,

1)在上确定一点,使得平面,并求的值;

2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案