已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
(1);(2)圆上存在两个不同点,满足..
【解析】
试题分析:本题主要考查椭圆的标准方程、点到直线的距离公式、垂径定理、圆的标准方程、两个圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、计算能力,考查学生的数形结合思想.第一问,利用直线方程得到椭圆的左焦点坐标,再结合离心率,得到椭圆的标准方程;第二问,利用点到直线的距离求出圆心到直线的距离,由已知弦长为,则由垂径定理得到圆的半径,从而得到圆的标准方程,利用两点间的距离公式得到和,代入已知中,得到P点的轨迹方程为圆,利用两个圆的位置关系判断两个圆相交,所以存在点P.
因为直线的方程为,
令,得,即 1分
∴ ,又∵,
∴ ,
∴ 椭圆的方程为. 4分
(2)∵ 圆心到直线的距离为,
又直线被圆截得的弦长为,
∴由垂径定理得,
故圆的方程为. 8分
设圆上存在点,满足即,
且的坐标为,
则, 整理得,它表示圆心在,半径是的圆。
∴ 12分
故有,即圆与圆相交,有两个公共点。
∴圆上存在两个不同点,满足. 14分
考点:椭圆的标准方程、点到直线的距离公式、垂径定理、圆的标准方程、两个圆的位置关系.
科目:高中数学 来源:2013-2014学年江苏省南京市高三年级第三次模拟考试数学试卷(解析版) 题型:填空题
已知抛物线y2=2px过点M(2,2),则点M到抛物线焦点的距离为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省韶关市高三4月高考模拟(二模)文科数学试卷(解析版) 题型:填空题
若以为极点,轴正半轴为极轴,曲线的极坐标方程为:上的点到曲线的参数方程为:(为参数)的距离的最小值为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省韶关市高三4月高考模拟(二模)文科数学试卷(解析版) 题型:选择题
某个几何体的三视图如图(其中正视图中的圆弧是半圆)所示,则该几何体的表面积为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省湛江市高三高考模拟测试二理科数学试卷(解析版) 题型:填空题
在长为的线段上任取一点,现作一矩形,邻边长分别等于线段、的长,则该矩形面积小于的概率为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com