精英家教网 > 高中数学 > 题目详情
如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)求点A到平面PBD的距离;
(3)求二面角B-PC-A的大小.
分析:(1)要证平面PBD⊥平面PAC,我们可以在一个平面内寻找另一平面的垂线,即证BD⊥平面PAC.利用线线垂直,可以证得线面垂直;
(2)先找出表示点A到平面PBD的距离的线段,AC∩BD=O,连接PO,过A作AE⊥PO交PO于E,所以AE⊥平面PBD,AE就是所求的距离,故可求;
(3)先利用三垂线定理,作出二面角B-PC-A的平面角,再利用三角形的相似即可求得.
解答:证明:(1)∵ABCD为菱形,∴BD⊥AC
∵PA⊥平面ABCD,∴BD⊥PA
∵AC∩PA=A
∴BD⊥平面PAC
∵BD?平面PBD
∴平面PBD⊥平面PAC   (3分)
(2)AC∩BD=O,连接PO,过A作AE⊥PO交PO于E,
∴AE⊥平面PBD,AE就是所求的距离,
在三角形PAO中,PA=2,AO=
3

PO=
7

AE=
PA×AO
PO
=
2
21
7
.(3分)
(3)过O作OF⊥PC,连BF,
∵OB⊥平面PAC,由三垂线定理,PC⊥BF,
∴∠OFB为二面角B-PC-A的平面角,
AC=2
3
,PC=4,OC=
3
,Rt△OFC~Rt△PAC
OF
PA
=
OC
PC
OF
2
=
3
4
⇒OF=
3
2

tan∠OFB=
OB
OF
=
1
3
2
=
2
3
3

∠OFB=arctan
2
3
3
,所求二面角大小为arctan
2
3
3
(3分)
点评:本题以线面垂直为载体,考查面面垂直,考查点面距离,考查面面角,解题的关键是正确运用面面垂直的判定定理,找出表示点面距离的线段及面面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60,
(1)求点A到平面PBD的距离的值;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图四边形ABCD是菱形,PA⊥平面ABCD,Q为PA的中点.
求证:(1)PC∥平面QBD;
(2)平面QBD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)求点A到平面PBD的距离;
(Ⅲ)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)证明:面PBD⊥面PAC;
(2)求锐二面角A-PC-B的余弦值.

查看答案和解析>>

同步练习册答案