精英家教网 > 高中数学 > 题目详情
10.已知奇函数f(x)的定义域为R,在(0,+∞)单调递增且f(3)=0,则不等式f(x)≥0的解集为[-3,0]U[3,+∞).

分析 确定f(x)在(-∞,0)上单调递增,根据f(3)=0,可得不等式f(x)≥0等价于x>0,f(x)≥f(3)或x<0,f(x)≥f(-3),从而可得结论.

解答 解:∵定义在R上的奇函数f(x)在(0,+∞)上单调递增,
∴f(x)在(-∞,0)上单调递增.
∵f(3)=0,∴不等式f(x)≥0等价于x>0,f(x)≥f(3)或x<0,f(x)≥f(-3)
∴-3≤x≤0或x≥3.
故答案为:[-3,0]∪[3,+∞)

点评 本题考查函数单调性与奇偶性的结合,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=loga(x-2)(a>0且a≠1)恒过定点(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)若椭圆C的离心率为$\frac{1}{2}$,右准线l的方程为x=4,求椭圆方程;
(2)若椭圆C的下顶点为B,P为椭圆C上任意一点,当P是椭圆C的上顶点时,PB最长,求椭圆C的离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的偶函数,f(x)在x≥0时,f(x)=ex+ln(x+1),若f(a)<f(a-1),则a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ex+x-2的零点所在的区间是①(填正确的序号)
①(0,$\frac{1}{2}$)②($\frac{1}{2}$,1)③(1,2)④(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图),剩下几何体的体积为50.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F1、F2为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,过F2作椭圆长轴的垂线交椭圆于点P,若∠PF1F2=60°,则椭圆的离心率是2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ax3-x2+5x,a∈R.
(1)当0<a≤$\frac{1}{15}$时,求函数f(x)的单调区间;
(2)设φ(x)=($\frac{1}{3}-a$)x3+2x2-(2a+5)x,并且函数g(x)=f(x)+φ(x)在[-5,-3]上是增函数,求a的取值范围;
(3)若a≠0,且f(x)在区间(5,+∞)的一个子区间上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\sqrt{x}$-2)7展开式中所有项的系数的和为-1.

查看答案和解析>>

同步练习册答案