已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足+=t (O为坐标原点),当|-|<时,求实数t的取值范围.
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的离心率是,分别是椭圆的左、右两个顶点,点是椭圆的右焦点。点是轴上位于右侧的一点,且满足.
(1)求椭圆的方程以及点的坐标;
(2)过点作轴的垂线,再作直线与椭圆有且仅有一个公共点,直线交直线于点.求证:以线段为直径的圆恒过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点为抛物线x2=4y的焦点.
(1)求椭圆方程;
(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(3)若斜率为1的直线交椭圆于M、N两点,求△OMN面积的最大值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2px(p>0),M点的坐标为(12,8),N点在抛物线C上,且满足=,O为坐标原点.
(1)求抛物线C的方程;
(2)以M点为起点的任意两条射线l1,l2的斜率乘积为1,并且l1与抛物线C交于A,B两点,l2与抛物线C交于D,E两点,线段AB,DE的中点分别为G,H两点.求证:直线GH过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于.
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合), 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知为椭圆上的三个点,为坐标原点.
(1)若所在的直线方程为,求的长;
(2)设为线段上一点,且,当中点恰为点时,判断的面积是否为常数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.
(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线交于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线与轴的交点为定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点.
(1)证明和均为定值;
(2)设线段的中点为,求的最大值;
(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:,定点M(0,5),直线与轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com