精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=cos(ωx+φ)(ω>0),x=-$\frac{π}{8}$是y=f(x)的零点,直线x=$\frac{3π}{8}$为y=f(x)图象的一条对称轴,且函数f(x)在区间($\frac{π}{12}$,$\frac{5π}{24}$)上单调,则ω的最大值是(  )
A.9B.7C.5D.3

分析 根据已知可得ω为正奇数,且ω≤8,结合条件进行验证,可得ω的最大值.

解答 解:∵x=-$\frac{π}{8}$是y=f(x)的零点,直线x=$\frac{3π}{8}$为y=f(x)图象的一条对称轴,
∴$\frac{2n+1}{4}•T$=$\frac{π}{2}$,(n∈N)
即ω=$\frac{2π}{T}$=2n+1,(n∈N)
即ω为正奇数,
∵函数f(x)在区间($\frac{π}{12}$,$\frac{5π}{24}$)上单调,
∴$\frac{5π}{24}$-$\frac{π}{12}$=$\frac{π}{8}$≤$\frac{T}{2}$
即T=$\frac{2π}{ω}≥\frac{π}{4}$,解得:ω≤8,
当ω=7时,-$\frac{7π}{8}$+φ=kπ+$\frac{π}{2}$,k∈Z,
取φ=$\frac{3π}{8}$,
此时f(x)在($\frac{π}{12}$,$\frac{5π}{24}$)不单调,不满足题意;
当ω=5时,-$\frac{5π}{8}$+φ=kπ+$\frac{π}{2}$,k∈Z,
取φ=$\frac{π}{8}$,
此时f(x)在($\frac{π}{12}$,$\frac{5π}{24}$)不单调,满足题意;
当ω=3时,-$\frac{3π}{8}$+φ=kπ+$\frac{π}{2}$,k∈Z,
取φ=-$\frac{π}{8}$,
此时f(x)在($\frac{π}{12}$,$\frac{5π}{24}$)单调,满足题意;故ω的最大值为3,
故选:D.

点评 本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,四面体P-ABC中,PA=PB=13,平面PAB⊥平面ABC,∠ACB=90°,AC=8,BC=6,则PC=13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数$f(x)=cos(2x+\frac{π}{3})+1$,如下结论中正确的是②③⑤.(写出所有正确结论的编号):
①点$(-\frac{5}{12}π,0)$是函数f(x)图象的一个对称中心;
②直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴; 
③函数f(x)的最小正周期是π;
④函数f(x)在$[-\frac{π}{6},\frac{π}{3}]$上为增函数;
⑤将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,对应的函数是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩(均为整数,满分100分)分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率以及频率分布直方图中第四小矩形的高;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中正确的是(  )
A.若p:?x∈R,ex>xe,q:?x0∈R,|x0|≤0,则(¬p)∧q为假
B.x=1是x2-x=0的必要不充分条件
C.直线ax+y+2=0与ax-y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在$\widehat{AB}$上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.
(1)试求S关于θ的函数关系式;
(2)求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在Rt△ACB中,∠ACB=90°,BC=2AC,分别以A、B为圆心,AC的长为半径作扇形ACD和扇形BEF,D、E在AB上,F在BC上.在△ACB中任取一点,这一点恰好在图中阴影部分的概率是(  )
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在Rt△ACB中,∠ACB=90°,AB=2AC,分别以A、B为圆心,AC的长为半径作扇形ACD和扇形BDE,D在AB上,E在BC上.在△ACB中任取一点,这一点恰好在图中阴影部分的概率是(  )
A.1-$\frac{{\sqrt{3}π}}{6}$B.$\frac{{\sqrt{3}π}}{6}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个命题错误的是(  )
A.若a⊥b,a⊥α,b?α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥β
C.若a⊥β,α⊥β,则a∥α或a?αD.若a∥α,α⊥β,则a⊥β

查看答案和解析>>

同步练习册答案