精英家教网 > 高中数学 > 题目详情

(1)当时,等式

是否成立?呢?

(2)假设时,等式成立.

能否推得时,等式也成立?时等式成立吗?

成立,证明见答案


解析:

(1)当时,等式成立.当时,左边,右边,左边右边,等式不成立.

(2)假设时等式成立,即有

       ,而

      

      

时等式成立.

时,;     

时,

时等式均不成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南京市、盐城市高三第一次模拟考试数学(解析版) 题型:解答题

(本小题满分16分)

 对于函数,若存在实数对(),使得等式对定义域中的每

一个都成立,则称函数是“()型函数”.

(1)判断函数是否为“()型函数”,并说明理由;

(2)已知函数是“(1,4)型函数”, 当时,都有成立,且当

时,,若,试求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数都是实数,在数列.对任何正整数,等式都成立。

   (Ⅰ)当时,求数列的通项公式;

   (Ⅱ)当时,要使数列是公比不为1等比数列,求的值;

   (Ⅲ)当时,设数列的前项和、的前项和分别为

的值.

查看答案和解析>>

同步练习册答案