精英家教网 > 高中数学 > 题目详情

【题目】已知圆C经过点两点,且圆心C在直线.

1)求圆C的方程;

2)设,对圆C上任意一点P,在直线MC上是否存在与点M不重合的点N,使是常数,若存在,求出点N坐标;若不存在,说明理由.

【答案】12)存在满足条件

【解析】

1)由圆的性质可知圆心是线段的垂直平分线和直线的交点,再求圆的半径,写出圆的标准方程;

2)假设存在点满足条件,设,利用两点距离公式计算,若为常数时,求的值.

1)线段AB的中点坐标为,∴线段AB的中垂线所在的直线方程为

∵圆心C在直线与直线的交点上,

联立两条直线方程可得圆心C的坐标为

设圆C的标准方程为,将点A坐标代入可得,

∴圆C的方程为.

2)点,直线MC方程为

假设存在点满足条件,设,则有

是常数时,是常数,

.

∴存在满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两点,点P是椭圆上任意一点,则点P到直线AB的距离最大值为( )

A. B. C. 6D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高,而从事水果加工的农民平均每户收入将为万元.

1)若动员户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求的取值范围;

2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象经过点,且相邻的两条对称轴之间的距离为.

1)求函数的解析式;

2)若将函数的图象向右平移个单位后得到函数的图象,当时,的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上的一点,过点作两条直线,分别与抛物线相交于异于点两点.

若直线过点的重心轴上,求直线的斜率;

若直线的斜率为1的垂心轴上,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北方某市一次全市高中女生身高统计调查数据显示:全市名高中女生的身高(单位: 服从正态分布.现从某高中女生中随机抽取名测量身高测量发现被测学生身高全部在之间现将测量结果按如下方式分成组:第下图是按上述分组方法得到的频率分布直方图.

(1)求这名女生身高不低于的人数;

(2)在这名女生身高不低于的人中任意抽取将该人中身高排名(从高到低)在全市前名的人数记为的数学期望.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥OABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA2MN分别为OABC的中点.

1)求证:直线MN平面OCD

2)求点B到平面DMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

同步练习册答案