精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g(x)在[﹣ ]上的最小值.

【答案】解:(Ⅰ)函数f(x)=sin(ωx﹣ )+sin(ωx﹣
=sinωxcos ﹣cosωxsin ﹣sin( ﹣ωx)
= sinωx﹣ cosωx
= sin(ωx﹣ ),
又f( )= sin( ω﹣ )=0,
ω﹣ =kπ,k∈Z,
解得ω=6k+2,
又0<ω<3,
∴ω=2;
(Ⅱ)由(Ⅰ)知,f(x)= sin(2x﹣ ),
将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y= sin(x﹣ )的图象;
再将得到的图象向左平移 个单位,得到y= sin(x+ )的图象,
∴函数y=g(x)= sin(x﹣ );
当x∈[﹣ ]时,x﹣ ∈[﹣ ],
∴sin(x﹣ )∈[﹣ ,1],
∴当x=﹣ 时,g(x)取得最小值是﹣ × =﹣
【解析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f( )=0求出ω的值;
(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣ ]时g(x)的最小值.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:,以及对函数y=Asin(ωx+φ)的图象变换的理解,了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了实现绿色发展,避免浪费能源,某市政府计划对居民用电采用阶梯收费的方法.为此,相关部分在该市随机调查了户居民六月份的用电量(单位:)和家庭收入(单位:万元),以了解这个城市家庭用电量的情况.

用电量数据如下:

.

对应的家庭收入数据如下:

.

(Ⅰ)根据国家发改委的指示精神,该市计划实施阶阶梯电价使的用户在第一档电价为/的用户在第二档电价为/的用户在第三档电价为/,试求出居民用电费用与用电量间的函数关系

(Ⅱ)以家庭收入为横坐标电量为纵坐标作出散点图(如图),求关于的回归直线方程(回归直线方程的系数四舍五入保留整数).

(Ⅲ)小明家的月收入按上述关系估计小明家月支出电费多少元

参考数据:.

参考公式:一组相关数据,…,的回归直线方程的斜率和截距的最小二乘法估计分别为其中为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的正方形,的中点,以为折痕把折起,使点到达点的位置,且.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=cos(x+ ),则下列结论错误的是( )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x= 对称
C.f(x+π)的一个零点为x=
D.f(x)在( ,π)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中),若函数的图象与轴的任意两个相邻交点间的距离为,且函数的图象过点

1)求的解析式;

2)求的单调增区间:

3)求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线.

(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;

(2)已知点,若直线上存在点满足条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形,,平面分别是的中点。

(1)证明:

(2)若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为 和P,且甲、乙两人各射击一次得分之和为2的概率为 .假设甲、乙两人射击互不影响,则P值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案