精英家教网 > 高中数学 > 题目详情

(本题满分15分) 已知函数f(x)=x3ax2bxa , bR.
(Ⅰ) 曲线C:yf(x) 经过点P(1,2),且曲线C在点P处的切线平行于直线y=2x+1,求ab的值;
(Ⅱ) 已知f(x)在区间(1,2) 内存在两个极值点,求证:0<ab<2

(Ⅰ)解:
由题设知: 解得     
(Ⅱ)解:因为在区间内存在两个极值点,
所以,即内有两个不等的实根.

由(1)+(3)得.
由(4)得
,故,从而.
所以.                       

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中
(Ⅰ)当时,求的极值点;
(Ⅱ)若为R上的单调函数,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若函数的图象在处的切线方程为,求的值;
(2)若函数上是增函数,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数,,其中R.
(1)当a=1时,判断的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有
成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
已知函数.当时,函数取得极值.
(I)求实数的值;
(II)若时,方程有两个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)当时,上恒成立,求实数的取值范围;
(2)当时,若函数上恰有两个不同零点,求实数的取值范围;
(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极大值; (2)
(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的分界线。设,试探究函数是否存在“分界线”?若存在,请给予证明,并求出的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案