精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx,数学公式,两函数图象的交点在x轴上,且在该点处切线相同.
(Ⅰ)求a,b的值;
(Ⅱ)求证:当x>1时,f(x)<g(x)成立;
(Ⅲ)证明:数学公式(n∈N*).

(Ⅰ)解:因为f(x)与g(x)的图象在x轴上有公共点(1,0),所以g(1)=0,即a+b=0.
又因为
由题意f'(1)=g'(1)=1,所以a-b=1
所以. …(4分)
(Ⅱ)证明:设,则
所以F(x)在x>1时单调递减.
由F(1)=0可得当x>1时,F(x)<0,即f(x)<g(x). …(9分)
(Ⅲ)证明:由(Ⅱ)得,(x>1).
,则
所以,k=1,2,3…,n.
将上述n个不等式依次相加得
所以. …(13分)
分析:(Ⅰ)利用f(x)与g(x)的图象在x轴上有公共点(1,0),可得一等式,再利用在该点处切线相同,可得另一等式,由此可求a,b的值;
(Ⅱ)构造函数,求导数,确定F(x)在x>1时单调递减,即可证得结论;
(Ⅲ)由(Ⅱ)得,(x>1),令,可得,k=1,2,3…,n,将上述n个不等式依次相加,即可证得结论.
点评:本题考查导数知识的运用,考查不等式的证明,解题的关键是构建新函数,确定函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案