精英家教网 > 高中数学 > 题目详情
A,B两地街道如图所示,某人要从A地前往B地,则路程最短的走法有
 
种(用数字作答).
考点:计数原理的应用
专题:排列组合
分析:根据题意,分析可得要从A地到B地路程最短,需要向上走2次,向右3次,共5次,则从5次中选3次向右,剩下2次向上即可满足路程最短,由组合数公式计算可得答案.
解答: 解:根据题意,要求从A地到B地路程最短,必须只向上或向右行走即可,
分析可得,需要向上走2次,向右3次,共5次,
从5次中选3次向右,剩下2次向上即可,
则有C53=10种不同的走法,
故答案为:10.
点评:本题考查排列、组合的应用,关键是理解路程最短的含义,将问题转化为组合的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“q≤1”是“函数f(x)=x2-x+q存在零点”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

x-1
x
>0”是“x>l”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为(  )
A、7B、8C、16D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=sin(2x+
π
6
)的图象上各点的横坐标缩短为原来的
1
2
,纵坐标不变,所得的函数解析式为(  )
A、y=sin(4x+
π
6
B、y=sin(4x+
π
3
C、y=sin(x+
π
6
D、y=sin(x+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

当a>l时,函数f (x)=logax和g(x)=(l-a)x的图象的交点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}:2,5,11,20,m,47…猜想{an}中的m等于(  )
A、27B、28C、31D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f1(x)图象上的点.
(1)求实数k的值及函数y=f1(x)的解析式:
(2)将y=f1(x)的图象向右平移3个单位,得到函数y=g(x)的图象,若2f1(x+
m
-3})-g(x)≥1对任意的x>0恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义符合函数sgnx=
1,x>0
0,x=0
-1,x<0
,设函数f(x)=
sgn(1-x)+1
2
f1(x)+
sgn(x-1)+1
2
f2(x),x∈(0,2),其中f1(x)=2x,f2(x)=-2x+4,若f(f(a))∈(0,1),则实数a的取值范围是(  )
A、(0,log2
3
2
B、(
5
4
,2)
C、(0,log2
3
2
)∪(
5
4
,2)
D、(log2
3
2
,1)∪(1,
5
4

查看答案和解析>>

同步练习册答案