分析 由条件利用正弦函数的图象特征可得$\frac{π}{4}$φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,$\frac{π}{6}$φ+$\frac{π}{3}$≥kπ-$\frac{π}{2}$,且$\frac{π}{3}$φ+$\frac{π}{3}$≤kπ+$\frac{3π}{2}$,由此求得φ的一个可能值.
解答 解:对于f(x)=sin(φx+$\frac{π}{3}$) (φ>0),由f($\frac{π}{6}$)=f($\frac{π}{3}$),可得函数的图象关于直线x=$\frac{π}{4}$对称,
∴$\frac{π}{4}$φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,即φ=4k+$\frac{2}{3}$.
再根据f(x)在区间($\frac{π}{6}$,$\frac{π}{3}$)有且只有一个最值,则$\frac{π}{6}$φ+$\frac{π}{3}$≥kπ-$\frac{π}{2}$,且$\frac{π}{3}$φ+$\frac{π}{3}$≤kπ+$\frac{3π}{2}$,
求得φ≥6k-5,且φ≤3k+$\frac{7}{2}$.
∴φ的一个可能是$\frac{2}{3}$ 或$\frac{14}{3}$,
故答案为:$\frac{14}{3}$ 或$\frac{2}{3}$.
点评 本题主要考查正弦函数的图象和性质,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | k=6$\sqrt{3}$ | B. | 0<k≤12 | C. | k≥12 | D. | k≥12或k=6$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 一个圆 | B. | 一个半圆 | C. | 一条射线 | D. | 一条直线 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 3 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,0] | B. | (-1,0) | C. | (-∞,0]∪[1,+∞) | D. | (-∞,-1]∪[0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com