【题目】如图,透明塑料制成的长方体ABCD﹣A1B1C1D1内灌进一些水,固定容器底面一边BC于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题:
①有水的部分始终呈棱柱形;
②没有水的部分始终呈棱柱形;
③水面EFGH所在四边形的面积为定值;
④棱A1D1始终与水面所在平面平行;
⑤当容器倾斜如图(3)所示时,BEBF是定值.
其中所有正确命题的序号是 ____.
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为,现采用随机模拟的方法估计该运动员三次投篮都命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4,5表示命中;6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
162 966 151 525 271 932 592 408 569 683
471 257 333 027 554 488 730 163 537 989
据此估计,该运动员三次投篮都命中的概率为
A. 0.15 B. 0.2 C. 0.25 D. 0.35
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P—ABCD,底面ABCD是边长为4的菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若PA=4,求二面角E—AF—C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通常用、、分别表示的三个内角、、所对的边长,表示的外接圆半径.
(1)如图,在以为圆心,半径为的圆中,、是圆的弦,其中,,角是锐角,求弦的长;
(2)在中,若是钝角,求证:;
(3)给定三个正实数、、,其中,问、、满足怎样的关系时,以、为边长,为外接圆半径的不存在、存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用、、表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2个人去参加甲游戏的概率;
(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为进行“阳光运动一小时”活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地。如图,点在上,点在上,且点在斜边上,已知米,米,,设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正的常数).
(1)试用表示,并指出如何设计矩形的长和宽,才能使得矩形的面积最大,且求出的最大值;
(2)求总造价关于面积的函数,说明如何选取,使总造价最低(不要求求出最低造价).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018届天津市耀华中学高三上学期第三次月考】已知椭圆的一个焦点在直线上,且离心率.
(1)求该椭圆的方程;
(2)若与是该椭圆上不同的两点,且线段的中点在直线上,试证: 轴上存在定点,对于所有满足条件的与,恒有;
(3)在(2)的条件下, 能否为等腰直角三角形?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.
(1)求抛物线方程;
(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价(元/件)与每天销售量(件)之间满足如图所示的关系.
(1)求出与之间的函数关系式;
(2)写出每天的利润与销售单价之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com