精英家教网 > 高中数学 > 题目详情

【题目】如图,透明塑料制成的长方体ABCD﹣A1B1C1D1内灌进一些水,固定容器底面一边BC于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题:

①有水的部分始终呈棱柱形;

②没有水的部分始终呈棱柱形;

③水面EFGH所在四边形的面积为定值;

④棱A1D1始终与水面所在平面平行;

⑤当容器倾斜如图(3)所示时,BEBF是定值.

其中所有正确命题的序号是 ____

【答案】①②④⑤

【解析】

根据题意,结合棱柱的特征进行判断,观察即可得到答案.

根据棱柱的定义知,有两个面是互相平行且是全等的多边形,其余每相邻两个面的交线也互相平行,而这些面都是平行四边形,所以①②正确;

因为水面EFGH所在四边形,从图2,图3可以看出,有两条对边边长不变而另外两条对边边长随倾斜度变化而变化,所以水面四边形EFGH的面积是变化的,③不对;

因为棱始终与平行,与水面始终平行,所以④正确;

因为水的体积是不变的,高始终是BC也不变,所以底面积也不会变 ,即BEBF是定值,

所以⑤正确;综上知①②④⑤正确,

故填①②④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都为,现采用随机模拟的方法估计该运动员三次投篮都命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4,5表示命中;6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

162 966 151 525 271 932 592 408 569 683

471 257 333 027 554 488 730 163 537 989

据此估计,该运动员三次投篮都命中的概率为

A. 0.15 B. 0.2 C. 0.25 D. 0.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P—ABCD,底面ABCD是边长为4的菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.

(Ⅰ)求证:AEPD

(Ⅱ)若PA=4,求二面角E—AF—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通常用分别表示的三个内角所对的边长,表示的外接圆半径.

1)如图,在以为圆心,半径为的圆中,是圆的弦,其中,角是锐角,求弦的长;

2)在中,若是钝角,求证:

3)给定三个正实数,其中,问满足怎样的关系时,以为边长,为外接圆半径的不存在、存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(1)求这4个人中恰有2个人去参加甲游戏的概率;

(2) 用X表示这4个人中去参加乙游戏的人数,求随机变量X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为进行“阳光运动一小时”活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地。如图,点上,点上,且点在斜边上,已知米,米,,设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正的常数).

(1)试用表示,并指出如何设计矩形的长和宽,才能使得矩形的面积最大,且求出的最大值;

(2)求总造价关于面积的函数,说明如何选取,使总造价最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届天津市耀华中学高三上学期第三次月考】已知椭圆的一个焦点在直线上,且离心率.

1)求该椭圆的方程;

2)若是该椭圆上不同的两点,且线段的中点在直线上,试证: 轴上存在定点,对于所有满足条件的,恒有

3)在(2)的条件下, 能否为等腰直角三角形?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价(元/件)与每天销售量(件)之间满足如图所示的关系.

(1)求出之间的函数关系式;

(2)写出每天的利润与销售单价之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案